首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analysis of the amino acid sequences of subunits NuoM and NuoN in the membrane domain of Complex I revealed a clear common pattern, including two lysines that are predicted to be located within the membrane, and which are important for quinone reductase activity. Site-directed mutations of the amino acid residues E144, K234, K265 and W243 in this pattern were introduced into the chromosomal gene nuoM of Escherichia coli Complex I. The activity of mutated Complex I was studied in both membranes and in purified Complex I. The quinone reductase activity was practically lost in K234A, K234R and E144A, decreased in W243A and K265A but unchanged in E144D. Complex I from all these mutants contained 1 mol tightly bound ubiquinone per mol FMN like wild type enzyme. The mutant enzymes E144D, W243A and K265A had wild type sensitivity to rolliniastatin and complete proton-pumping efficiency of Complex I. Remarkably, the subunits NuoL and NuoH in the membrane domain also appear to contain conserved lysine residues in transmembrane helices, which may give a clue of the mechanism of proton translocation. A tentative principle of proton translocation by Complex I is suggested based on electrostatic interactions of lysines in the membrane subunits.  相似文献   

2.

Background

The membrane arm of Complex I (NADH:ubiquinone oxidoreductase) contains three large, and closely related subunits, which are called L, M, and N in E. coli. These subunits are homologous to components of multi-subunit Na+/H+ antiporters, and so are implicated in proton translocation.

Methodology/Principal Findings

Nineteen site-specific mutations were constructed at two corresponding positions in each of the three subunits. Two positions were selected in each subunit: L_K169, M_K173, N_K158 and L_Q236, M_H241, N_H224. Membrane vesicles were prepared from all of the resulting mutant strains, and were assayed for deamino-NADH oxidase activity, proton translocation, ferricyanide reductase activity, and sensitivity to capsaicin. Corresponding mutations in the three subunits were found to have very similar effects on all activities measured. In addition, the effect of adding exogenous decylubiquinone on these activities was tested. 50 µM decylubiquinone stimulated both deamino-NADH oxidase activity and proton translocation by wild type membrane vesicles, but was inhibitory towards the same activities by membrane vesicles bearing the lysine substitution at the L236/M241/N224 positions.

Conclusions/Significance

The results show a close correlation with reduced activity among the corresponding mutations, and provide evidence that the L, M, and N subunits have a common role in Complex I.  相似文献   

3.
Complex I (NADH:ubiquinone oxidoreductase) is a multisubunit, membrane-bound enzyme of the respiratory chain. The energy from NADH oxidation in the peripheral region of the enzyme is used to drive proton translocation across the membrane. One of the integral membrane subunits, nuoL in Escherichia coli, has an unusual lateral helix of ∼75 residues that lies parallel to the membrane surface and has been proposed to play a mechanical role as a piston during proton translocation (Efremov, R. G., Baradaran, R., and Sazanov, L. A. (2010) Nature 465, 441–445). To test this hypothesis we have introduced 11 pairs of cysteine residues into Complex I; in each pair one is in the lateral helix, and the other is in a nearby region of subunit N, M, or L. The double mutants were treated with Cu2+ ions or with bi-functional methanethiosulfonate reagents to catalyze cross-link formation in membrane vesicles. The yields of cross-linked products were typically 50–90%, as judged by immunoblotting, but in no case did the activity of Complex I decrease by >10–20%, as indicated by deamino-NADH oxidase activity or rates of proton translocation. In contrast, several pairs of cysteine residues introduced at other interfaces of N:M and M:L subunits led to significant loss of activity, in particular, in the region of residue Glu-144 of subunit M. The results do not support the hypothesis that the lateral helix of subunit L functions like a piston, but rather, they suggest that conformational changes might be transmitted more directly through the functional residues of the proton translocation apparatus.  相似文献   

4.
NADH:quinone oxidoreductase, or Complex I, is a multi-subunit membrane-bound enzyme in the respiratory chain of many pro- and eukaryotes. The enzyme catalyzes the oxidation of NADH and donates electrons to the quinone pool, coupled to proton translocation across the membrane, but the mechanism of energy transduction is not understood. In bacteria the enzyme consists of 14 subunits, seven membrane spanning and seven protruding from the membrane. The hydrophobic NuoH (NQO8, ND1, NAD1, NdhA) subunit is seemingly involved in quinone binding. A homologous, structurally and most likely functionally similar subunit is also found in F(420)H2 oxidoreductases and in complex membrane-bound hydrogenases. We have made theoretical analyses of NuoH and NuoH-like polypeptides and experimentally analyzed the transmembrane topology of the NuoH subunit from Rhodobacter capsulatus by constructing and analyzing alkaline phosphatase fusion proteins. This demonstrated that the NuoH polypeptide has eight transmembrane segments, and four highly conserved hydrophilic sequence motifs facing the inside, bacterial cytoplasm. The N-terminal and C-terminal ends are located on the outside of the membrane. A topology model of NuoH based on these results is presented, and implications from the model are discussed.  相似文献   

5.
NADH:ubiquinone oxidoreductase (Complex I), the electron input enzyme in the respiratory chain of mitochondria and many bacteria, couples electron transport to proton translocation across the membrane. Complex I is a primary proton pump; although its proton translocation mechanism is yet to be known, it is considered radically different from any other mechanism known for redox-driven proton pumps: no redox centers have been found in its membrane domain where the proton translocation takes place. Here we studied the properties and the catalytic role of the enzyme-bound ubiquinone in the solubilized, purified Complex I from Escherichia coli. The ubiquinone content in the enzyme preparations was 1.3±0.1 per bound FMN residue. Rapid mixing of Complex I with NADH, traced optically, demonstrated that both reduction and re-oxidation kinetics of ubiquinone coincide with the respective kinetics of the majority of Fe-S clusters, indicating kinetic competence of the detected ubiquinone. Optical spectroelectrochemical redox titration of Complex I followed at 270-280nm, where the redox changes of ubiquinone contribute, did not reveal any transition within the redox potential range typical for the membrane pool, or loosely bound ubiquinone (ca. +50-+100mV vs. NHE, pH 6.8). The transition is likely to take place at much lower potentials (E(m) ≤-200mV). Such perturbed redox properties of ubiquinone indicate that it is tightly bound to the enzyme's hydrophobic core. The possibility of two ubiquinone-binding sites in Complex I is discussed.  相似文献   

6.
《BBA》2020,1861(10):148240
Complex I, NADH-ubiquinone oxidoreductase, is the first enzyme in the mitochondrial and bacterial aerobic respiratory chain. It pumps four protons through four transiently open pathways from the high pH, negative, N-side of the membrane to the positive, P-side driven by the exergonic transfer of electrons from NADH to a quinone. Three protons transfer through subunits descended from antiporters, while the fourth, E-channel is unique. The path through the E-channel is determined by a network analysis of hydrogen bonded pathways obtained by Monte Carlo sampling of protonation states, polar hydrogen orientation and water occupancy. Input coordinates are derived from molecular dynamics trajectories comparing oxidized, reduced (dihydro) and no menaquinone-8 (MQ). A complex proton transfer path from the N- to the P-side is found consisting of six clusters of highly connected hydrogen-bonded residues. The network connectivity depends on the presence of quinone and its redox state, supporting a role for this cofactor in coupling electron and proton transfers. The N-side is more organized with MQ-bound complex I facilitating proton entry, while the P-side is more connected in the apo-protein, facilitating proton exit. Subunit Nqo8 forms the core of the E channel; Nqo4 provides the N-side entry, Nqo7 and then Nqo10 join the pathway in the middle, while Nqo11 contributes to the P-side exit.  相似文献   

7.
The bacterial H+-pumping NADH-quinone oxidoreductase (NDH-1) is an L-shaped membrane-bound enzymatic complex. Escherichia coli NDH-1 is composed of 13 subunits (NuoA–N). NuoM (ND4) subunit is one of the hydrophobic subunits that constitute the membrane arm of NDH-1 and was predicted to bear 14 helices. We attempted to clarify the membrane topology of NuoM by the introduction of histidine tags into different positions by chromosomal site-directed mutagenesis. From the data, we propose a topology model containing 12 helices (helices I–IX and XII–XIV) located in transmembrane position and two (helices X and XI) present in the cytoplasm. We reported previously that residue Glu144 of NuoM was located in the membrane (helix V) and was essential for the energy-coupling activities of NDH-1 (Torres-Bacete, J., Nakamaru-Ogiso, E., Matsuno-Yagi, A., and Yagi, T. (2007) J. Biol. Chem. 282, 36914–36922). Using mutant E144A, we studied the effect of shifting the glutamate residue to all sites within helix V and three sites each in helix IV and VI on the function of NDH-1. Twenty double site-directed mutants including the mutation E144A were constructed and characterized. None of the mutants showed alteration in the detectable levels of expressed NuoM or on the NDH-1 assembly. In addition, most of the double mutants did not restore the energy transducing NDH-1 activities. Only two mutants E144A/F140E and E144A/L147E, one helix turn downstream and upstream restored the energy transducing activities of NDH-1. Based on these results, a role of Glu144 for proton translocation has been discussed.  相似文献   

8.
Respiratory complex I (NADH:ubiquinone oxidoreductase) is an L-shaped multisubunit protein assembly consisting of a hydrophobic membrane arm and a hydrophilic peripheral arm. It catalyses the transfer of two electrons from NADH to quinone coupled to the translocation of four protons across the membrane. Although we have solved recently the crystal structure of the peripheral arm, the structure of the complete enzyme and the coupling mechanism are not yet known. The membrane domain of Escherichia coli complex I consists of seven different subunits with total molecular mass of 258 kDa. It is significantly more stable than the whole enzyme, which allowed us to obtain well-ordered two-dimensional crystals of the domain, belonging to the space group p22(1)2(1). Comparison of the projection map of negatively stained crystals with previously published low-resolution structures indicated that the characteristic curved shape of the membrane domain is remarkably well conserved between bacterial and mitochondrial enzymes, helping us to interpret projection maps in the context of the intact complex. Two pronounced stain-excluding densities at the distal end of the membrane domain are likely to represent the two large antiporter-like subunits NuoL and NuoM. Cryo-electron microscopy on frozen-hydrated crystals allowed us to calculate a projection map at 8 A resolution. About 60 transmembrane alpha-helices, both perpendicular to the membrane plane and tilted, are present within one membrane domain, which is consistent with secondary structure predictions. A possible binding site and access channel for quinone are found at the interface with the peripheral arm. Tentative assignment of individual subunits to the features of the map has been made. The location of subunits NuoL and NuoM at substantial distance from the peripheral arm, which contains all the redox centres of the complex, indicates that conformational changes are likely to play a role in the mechanism of coupling between electron transfer and proton pumping.  相似文献   

9.
According to the 'mitochondrial theory of aging' it is expected that the activity of NADH Coenzyme Q reductase (Complex I) would be most severely affected among mitochondrial enzymes, since mitochondrial DNA encodes for 7 subunits of this enzyme. Being these subunits the site of binding of the acceptor substrate (Coenzyme Q) and of most inhibitors of the enzyme, it is also expected that subtle kinetic changes of quinone affinity and enzyme inhibition could develop in aging before an overall loss of activity would be observed.The overall activity of Complex I was decreased in several tissues from aged rats, nevertheless it was found that direct assay of Complex I using artificial quinone acceptors may underevaluate the enzyme activity. The most acceptable results could be obtained by applying the 'pool equation' to calculate Complex I activity from aerobic NADH oxidation; using this method it was found that the decrease in Complex I activity in mitochondria from old animals was greater than the activity calculated by direct assay of NADH Coenzyme Q reductase.A decrease of NADH oxidation and its rotenone sensitivity was observed in nonsynaptic mitochondria, but not in synaptic 'light' and 'heavy' mitochondria of brain cortex from aged rats.In a study of Complex I activity in human platelet membranes we found that the enzyme activity was unchanged but the titre for half-inhibition by rotenone was significantly increased in aged individuals and proposed this change as a suitable biomarker of aging and age-related diseases. (Mol Cell Biochem 174: 329–333, 1997)  相似文献   

10.
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential (Δp), either by supporting transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by supporting transmembrane proton transfer. The first mechanism has been unequivocally demonstrated to be operational for Δp-dependent catalysis of succinate oxidation by quinone in the case of the dihaem-containing succinate:menaquinone reductase (SQR) from the Gram-positive bacterium Bacillus licheniformis. This is physiologically relevant in that it allows the transmembrane potential Δp to drive the endergonic oxidation of succinate by menaquinone by the dihaem-containing SQR of Gram-positive bacteria. In the case of a related but different respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of the ?-proteobacterium Wolinella succinogenes, evidence has been obtained that both mechanisms are combined, so as to facilitate transmembrane electron transfer by proton transfer via a both novel and essential compensatory transmembrane proton transfer pathway (“E-pathway”). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory “E-pathway” appears to be required by all dihaem-containing QFR enzymes and results in the overall reaction being electroneutral. However, here we show that the reverse reaction, the oxidation of succinate by quinone, as catalysed by W. succinogenes QFR, is not electroneutral. The implications for transmembrane proton transfer via the E-pathway are discussed.  相似文献   

11.
To investigate the possible role of basic residues in H+ translocation through vacuolar-type H+-pumping pyrophosphatases (V-PPases), conserved arginine and lysine residues predicted to reside within or close to transmembrane domains of an Arabidopsis thaliana V-PPase (AVP1) were subjected to site-directed mutagenesis. One of these mutants (K461A) exhibited a “decoupled” phenotype in which proton-pumping but not hydrolysis was inhibited. Similar results were reported previously for an E427Q mutant, resulting in the proposal that E427 might be involved in proton translocation. However, the double mutant E427K/K461E has a wild type phenotype, suggesting that E427 and K461 form a stabilising salt bridge, but that neither residue plays a critical role in proton translocation.  相似文献   

12.
The proton-translocating NADH-quinone (Q) oxidoreductase (NDH-1) from Escherichia coli is composed of two segments: a peripheral arm and a membrane arm. The membrane arm contains 7 hydrophobic subunits. Of these subunits, NuoM, a homolog of the mitochondrial ND4 subunit, is proposed to be involved in proton translocation and Q-binding. Therefore, we conducted site-directed mutation of 15 amino acid residues of NuoM and investigated their properties. In all mutants, the assembly of the whole enzyme seemed intact. Mutation of highly conserved Glu144 and Lys234 leads to almost total elimination of energy-transducing NDH-1 activities as well as increased production of superoxide radicals. Their NADH dehydrogenase activities were almost normal. Because these two residues are predicted to be located in the transmembrane segments of NuoM, the results strongly suggest that they participate in proton translocation. Although it is hypothesized that His interacts with a Q head group, mutations at four His moderately inhibited NDH-1 activities and had almost no effect on the Km values for Q or IC50 values of capsaicin-40, a competitive inhibitor for the Q binding site. The data suggest that these His are not involved in the catalytic Q-binding. Functional roles of NuoM and advantages of NDH-1 research as a model for mitochondrial complex I study have been discussed.  相似文献   

13.
Ohnishi T  Salerno JC 《FEBS letters》2005,579(21):4555-4561
A novel mechanism for proton/electron transfer is proposed for NADH-quinone oxidoreductase (complex I) based on the following findings: (1) EPR signals of the protein-bound fast-relaxing semiquinone anion radicals (abbreviated as Q(Nf)-) are observable only in the presence of proton-transmembrane electrochemical potential; (2) Iron-sulfur cluster N2 and Q(Nf)- are directly spin-coupled; and (3) The projection of the interspin vector extends only 5A along the membrane normal [Yano, T., Dunham, W.R. and Ohnishi, T. (2005) Biochemistry, 44, 1744-1754]. We propose that the proton pump is operated by redox-driven conformational changes of the quinone binding protein. In the input state, semiquinone is reduced to quinol, acquiring two protons from the N (matrix) side of the mitochondrial inner membrane and an electron from the low potential (NADH) side of the respiratory chain. A conformational change brings the protons into position for release at the P (inter-membrane space) side of the membrane via a proton-well. Concomitantly, an electron is donated to the quinone pool at the high potential side of the coupling site. The system then returns to the original state to repeat the cycle. This hypothesis provides a useful frame work for further investigation of the mechanism of proton translocation in complex I.  相似文献   

14.
The proton-translocating NADH-quinone oxidoreductase (complex I/NDH-1) is the first and largest enzyme of the respiratory chain which has a central role in cellular energy production and is implicated in many human neurodegenerative diseases and aging. It is believed that the peripheral domain of complex I/NDH-1 transfers the electron from NADH to Quinone (Q) and the redox energy couples the proton translocation in the membrane domain. To investigate the mechanism of the proton translocation, in a series of works we have systematically studied all membrane subunits in the Escherichia coli NDH-1 by site-directed mutagenesis. In this mini-review, we have summarized our strategy and results of the mutagenesis by depicting residues essential for proton translocation, along with those for subunit connection. It is suggested that clues to understanding the driving forces of proton translocation lie in the similarities and differences of the membrane subunits, highlighting the communication of essential charged residues among the subunits. A possible proton translocation mechanism with all membrane subunits operating in unison is described.  相似文献   

15.
NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) is the largest complex of the mitochondrial respiratory chain. In eukaryotes, it is composed of more than 40 subunits that are encoded by both the nuclear and mitochondrial genomes. Plant Complex I differs from the enzyme described in other eukaryotes, most notably due to the large number of plant-specific subunits in the membrane arm of the complex. The elucidation of the assembly pathway of Complex I has been a long-standing research aim in cellular biochemistry. We report the study of Arabidopsis mutants in Complex I subunits using a combination of Blue-Native PAGE and immunodetection to identify stable subcomplexes containing Complex I components, along with mass spectrometry analysis of Complex I components in membrane fractions and two-dimensional diagonal Tricine SDS-PAGE to study the composition of the largest subcomplex. Four subcomplexes of the membrane arm of Complex I with apparent molecular masses of 200, 400, 450, and 650 kDa were observed. We propose a working model for the assembly of the membrane arm of Complex I in plants and assign putative roles during the assembly process for two of the subunits studied.  相似文献   

16.
Complex I is the first enzyme of the respiratory chain and plays a central role in cellular energy production. It has been implicated in many human neurodegenerative diseases, as well as in ageing. One of the biggest membrane protein complexes, it is an L-shaped assembly consisting of hydrophilic and membrane domains. Previously, we have determined structures of the hydrophilic domain in several redox states. Last year was marked by fascinating breakthroughs in the understanding of the complete structure. We described the architecture of the membrane domain and of the entire bacterial complex I. X-ray analysis of the larger mitochondrial enzyme has also been published. The core subunits of the bacterial and mitochondrial enzymes have remarkably similar structures. The proposed mechanism of coupling between electron transfer and proton translocation involves long-range conformational changes, coordinated in part by a long α-helix, akin to the coupling rod of a steam engine.  相似文献   

17.
A sodium ion efflux, together with a proton influx and an inside-positive ΔΨ, was observed during NADH-respiration by Rhodothermus marinus membrane vesicles. Proton translocation was monitored by fluorescence spectroscopy and sodium ion transport by 23Na-NMR spectroscopy. Specific inhibitors of complex I (rotenone) and of the dioxygen reductase (KCN) inhibited the proton and the sodium ion transport, but the KCN effect was totally reverted by the addition of menaquinone analogues, indicating that both transports were catalyzed by complex I. We concluded that the coupling ion of the system is the proton and that neither the catalytic reaction nor the establishment of the delta-pH are dependent on sodium, but the presence of sodium increases proton transport. Moreover, studies of NADH oxidation at different sodium concentrations and of proton and sodium transport activities allowed us to propose a model for the mechanism of complex I in which the presence of two different energy coupling sites is suggested.  相似文献   

18.
Respiratory complex I catalyses the transfer of electrons from NADH to quinone coupled to the translocation of protons across the membrane. The mechanism of coupling and the structure of the complete enzyme are not known. The membrane domain of the complex contains three similar antiporter-like subunits NuoL/M/N, probably involved in proton pumping. We have previously shown that subunits NuoL/M can be removed from the rest of the complex, suggesting their location at the distal end of the membrane domain. Here, using electron microscopy and single particle analysis, we show that subunits NuoL and M jointly occupy a distal half of the membrane domain, separated by about 10nm from the interface with the peripheral arm. This indicates that coupling mechanism of complex I is likely to involve long range conformational changes.  相似文献   

19.
Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I.  相似文献   

20.
During aerobic growth of Escherichia coli, nicotinamide adenine dinucleotide (NADH) can initiate electron transport at either of two sites: Complex I (NDH-1 or NADH: ubiquinone oxidoreductase) or a single-subunit NADH dehydrogenase (NDH-2). We report evidence for the specific coupling of malate dehydrogenase to Complex I. Membrane vesicles prepared from wild type cultures retain malate dehydrogenase and are capable of proton translocation driven by the addition of malate+NAD. This activity was inhibited by capsaicin, an inhibitor specific to Complex I, and it proceeded with deamino-NAD, a substrate utilized by Complex I, but not by NDH-2. The concentration of free NADH produced by membrane vesicles supplemented with malate+NAD was estimated to be 1 μM, while the rate of proton translocation due to Complex I was consistent with a some what higher concentration, suggesting a direct transfer mechanism. This interpretation was supported by competition assays in which inactive mutant forms of malate dehydrogenase were able to inhibit Complex I activity. These two lines of evidence indicate that the direct transfer of NADH from malate dehydrogenase to Complex I can occur in the E. coli system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号