首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma β-amyloid protein (Aβ) isoforms are considered potential biomarkers for Alzheimer's disease (AD) and dementia. The relation between plasma and cerebrospinal fluid (CSF) levels of Aβ isoforms remains unclear. In order to identify possible correlations between Aβ levels in plasma and CSF we determined Aβ levels in time-linked plasma and CSF samples. Aβ concentrations in plasma (Aβ1–42 and AβN–42) and CSF (Aβ1–42) samples from 49 AD patients, 47 non-Alzheimer's disease dementia (NONAD) patients, 39 MCI patients and 29 controls were determined using a multi-parameter fluorimetric bead-based immunoassay using xMAP® technology (for plasma) and a conventional single-parameter ELISA (for CSF). Plasma Aβ1–42 concentrations did not correlate with CSF Aβ1–42 concentrations in the total study population, or in the different diagnostic groups. No correlations between plasma AβN–42 and CSF Aβ1–42 levels were found either. The CSF/serum albumin index did not show any significant differences between AD, NONAD, MCI and controls.These results suggest that the Aβ levels in plasma are independent of the Aβ levels in CSF both in dementia and controls. The fact that CSF and plasma Aβ do not correlate in patients as well as controls and no significant differences in plasma Aβ1–42 or AβN–42 between patients and controls can be detected hampers the diagnostic utility of the plasma Aβ levels as biomarkers for dementia.  相似文献   

2.
β-Amyloid peptide (Aβ) 1–42, involved in the pathogenesis of Alzheimer’s disease, binds copper ions to form Aβ · Cun complexes that are able to generate H2O2 in the presence of a reductant and O2. The production of H2O2 can be stopped with chelators. More reactive than H2O2 itself, hydroxyl radicals HO (generated when a reduced redox active metal complex interacts with H2O2) are also probably involved in the oxidative stress that creates brain damage during the disease. We report in the present work a method to monitor the effect of chelating agents on the production of hydrogen peroxide by metallo-amyloid peptides. The addition of H2O2 associated to a pre-incubation step between ascorbate and Aβ · Cun allows to study the formation of H2O2 but also, at the same time, its transformation by the copper complexes. Aβ · Cun peptides produce but do not efficiently degrade H2O2. The reported analytic method, associated to precipitation experiments of copper-containing amyloid peptides, allows to study the inhibition of H2O2 production by chelators. The action of a ligand such as EDTA is probably due to the removal of the copper ions from Aβ · Cun, whereas bidentate ligands such as 8-hydroxyquinolines probably act via the formation of ternary complexes with Aβ · Cun. The redox activity of these bidentate ligands can be modulated by the incorporation or the modification of substituents on the quinoline heterocycle.  相似文献   

3.
Ninjin-yoei-to (NYT), a Kampo medicine, has ameliorative effects on cognitive dysfunction via enhancing cholinergic neuron activity. To explore an efficacy of NYT administration for prevention and cure of Alzheimer’s disease, here we examined the effect of NYT on amyloid β1-42 (Aβ1-42)-induced neurodegeneration in the dentate gyrus. A diet containing 3% NYT was administered to mice for 2 weeks and human Aβ1-42 was intracerebroventricularly injected. Neurodegeneration in the dentate granule cell layer of the hippocampus, which was determined 2 weeks after the injection, was rescued by administration of the diet for 4 weeks. Aβ staining (uptake) was not modified in the dentate granule cell layer by pre-administration of the diet for 2 weeks, while Aβ1-42-induced increase in intracellular Zn2+ was reduced, suggesting that pre-administration of NYT prior to Aβ injection is effective for reducing Aβ1-42-induced Zn2+ toxicity in the dentate gyrus. As a matter of fact, Aβ1-42-induced neurodegeneration in the dentate gyrus was rescued by pre-administration of NYT. Interestingly, the level of metallothioneins, intracellular Zn2+-binding proteins, which can capture Zn2+ from Zn-Aβ1-42 complexes, was elevated in the dentate granule cell layer by pre-administration of NYT. The present study suggests that pre-administration of NYT prevents Aβ1-42-mediated neurodegeneration in the dentate gyurs by induced synthesis of metallothioneins, which reduces intracellular Zn2+ toxicity induced by Aβ1-42.  相似文献   

4.
Down syndrome (DS) is a leading cause of intellectual disability that also results in hallmark Alzheimer''s disease (AD) pathologies such as amyloid beta (Aβ) plaques and hyperphosphorylated tau. The Ts65Dn mouse model is commonly used to study DS, as trisomic Ts65Dn mice carry 2/3 of the triplicated gene homologues as occur in human DS. The Ts65Dn strain also allows investigation of mechanisms common to DS and AD pathology, with many of these triplicated genes implicated in AD; for example, trisomic Ts65Dn mice overproduce amyloid precursor protein (APP), which is then processed into soluble Aβ40‐42 fragments. Notably, Ts65Dn mice show alterations to the basal forebrain, which parallels the loss of function in this region observed in DS and AD patients early on in disease progression. However, a complete picture of soluble Aβ40‐42 accumulation in a region‐, age‐, and sex‐specific manner has not yet been characterized in the Ts65Dn model. Here, we show that trisomic mice accumulate soluble Aβ40‐42 in the basal forebrain, frontal cortex, hippocampus, and cerebellum in an age‐specific manner, with elevation in the frontal cortex and hippocampus as early as 4 months of age. Furthermore, we detected sex differences in accumulation of Aβ40‐42 within the basal forebrain, with females having significantly higher Aβ40‐42 at 7–8 months of age. Lastly, we show that APP expression in the basal forebrain and hippocampus inversely correlates with Aβ40‐42 levels. This spatial and temporal characterization of soluble Aβ40‐42 in the Ts65Dn model allows for further exploration of the role soluble Aβ plays in the progression of other AD‐like pathologies in these key brain regions.  相似文献   

5.
Intracellular amyloid beta-peptide (Aβ) accumulation is considered to be a key pathogenic factor in sporadic Alzheimer’s disease (AD), but the mechanisms by which it triggers neuronal dysfunction remain unclear. We hypothesized that gradual mitochondrial dysfunction could play a central role in both initiation and progression of sporadic AD. Thus, we analyzed changes in mitochondrial structure and function following direct exposure to increasing concentrations of Aβ1−42 and Aβ25−35 in order to look more closely at the relationships between mitochondrial membrane viscosity, ATP synthesis, ROS production, and cytochrome c release. Our results show the accumulation of monomeric Aβ within rat brain and muscle mitochondria. Subsequently, we observed four different and additive modes of action of Aβ, which were concentration dependent: (i) an increase in mitochondrial membrane viscosity with a concomitant decrease in ATP/O, (ii) respiratory chain complexes inhibition, (iii) a potentialization of ROS production, and (iv) cytochrome c release.  相似文献   

6.
7.
Amyloid‐beta (Aβ) oligomer is known to contribute to the pathophysiology of age‐related macular degeneration. Herein, we aimed to elucidate the in vivo and in vitro effects of Aβ1‐42 application on retinal morphology in rats. Our in vivo studies revealed that intracerebroventricular administration of Aβ1‐42 oligomer caused dysmorphological changes in both retinal ganglion cells and retinal pigment epithelium. In addition, in vitro studies revealed that ARPE‐19 cells following Aβ1‐42 oligomer application had decreased viability along with apoptosis and decreased expression of the tight junction proteins, increased expression of both phosphor‐AKT and phosphor‐GSK3β and decreased expression of both SIRT1 and β‐catenin. Application of conditioned medium (CM) obtained from mesenchymal stem cells (MSC) protected against Aβ1‐42 oligomer‐induced retinal pathology in both rats and ARPE‐19 cells. In order to explore the potential role of peptides secreted from the MSCs, we applied mass spectrometry to compare the peptidomics profiles of the MSC‐CM. Gene ontology enrichment analysis and String analysis were performed to explore the differentially expressed peptides by predicting the functions of their precursor proteins. Bioinformatics analysis showed that 3‐8 out of 155–163 proteins in the MSC‐CM maybe associated with SIRT1/pAKT/pGSK3β/β‐catenin, tight junction proteins, and apoptosis pathway. In particular, the secretomes information on the MSC‐CM may be helpful for the prevention and treatment of retinal pathology in age‐related macular degeneration.  相似文献   

8.
Alzheimer’s disease (AD) is the most common form of dementia among the elderly. Neuritic plaques whose primary component is amyloid beta peptide (Aβ) and neurofibrillary tangles which are composed of hyperphosphorylated tau, are known to be the neuropathological hallmarks of AD. In addition, impaired synaptic plasticity in neuronal networks is thought to be important mechanism underlying for the cognitive deficits observed in AD. Although various causative factors, including excitotoxicity, mitochondrial dysregulation and oxidative damage caused by Aβ, are involved in early onset of AD, fundamental therapeutics that can modify the progression of this disease are not currently available. In the present study, we investigated whether phloroglucinol (1, 3, 5—trihydroxybenzene), a component of phlorotannins, which are plentiful in Ecklonia cava, a marine brown alga species, displays therapeutic activities in AD. We found that phloroglucinol attenuates the increase in reactive oxygen species (ROS) accumulation induced by oligomeric Aβ1–42 (Aβ1–42) treatment in HT-22, hippocampal cell line. In addition, phloroglucinol was shown to ameliorate the reduction in dendritic spine density induced by Aβ1–42 treatment in rat primary hippocampal neuron cultures. We also found that the administration of phloroglucinol to the hippocampal region attenuated the impairments in cognitive dysfunction observed in 22-week-old 5XFAD (Tg6799) mice, which are used as an AD animal model. These results indicate that phloroglucinol displays therapeutic potential for AD by reducing the cellular ROS levels.  相似文献   

9.
Alzheimer’s disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid β-peptide (Aβ) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Aβ1–40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Aβ complexes were found to be more toxic than those formed without the enzyme, for Aβ1–40 and Aβ1–42, but not for amyloid fibrils formed with AβVal18→Ala, a synthetic variant of the Aβ1–40 peptide. Of all the AChE-Aβ complexes tested the one containing the Aβ1–40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Aβ1–40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Aβ1–40 aggregates are more toxic than those of AChE-Aβ1–42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

10.
This paper describes the synthesis and biological evaluation of a new series of 2,5-diphenyl-1,3,4-oxadiazole (1,3,4-DPOD) derivatives for detecting β-amyloid plaques in Alzheimer’s brains. The affinity for β-amyloid plaques was assessed by an in vitro binding assay using pre-formed synthetic Aβ42 aggregates. The new series of 1,3,4-DPOD derivatives showed affinity for Aβ42 aggregates with Ki values ranging from 20 to 349 nM. The 1,3,4-DPOD derivatives clearly stained β-amyloid plaques in an animal model of Alzheimer’s disease, reflecting the affinity for Aβ42 aggregates in vitro. Compared to 3,5-diphenyl-1,2,4-oxadiazole (1,2,4-DPOD) derivatives, they displayed good penetration of and fast washout from the brain in biodistribution experiments using normal mice. The novel radioiodinated 1,3,4-DPOD derivatives may be useful probes for detecting β-amyloid plaques in the Alzheimer’s brain.  相似文献   

11.
The aggregation of β‐amyloid (Aβ) has the neurotoxicity, which is thought to play critical role in the pathogenesis of Alzheimer''s disease (AD). Inhibiting Aβ deposition and neurotoxicity has been considered as an important strategy for AD treatment. 3,6''‐Disinapoyl sucrose (DISS), one of the oligosaccharide esters derived from traditional Chinese medicine Polygalae Radix, possesses antioxidative activity, neuroprotective effect and anti‐depressive activity. This study was to explore whether DISS could attenuate the pathological changes of Aβ1‐42 transgenic Caenorhabditis elegans (C. elegans). The results showed that DISS (5 and 50 μM) treatment significantly prolonged the life span, increased the number of egg‐laying, reduced paralysis rate, decreased the levels of lipofuscin and ROS and attenuated Aβ deposition in Aβ1‐42 transgenic Celegans. Gene analysis showed that DISS could up‐regulate the mRNA expression of sod3, gst4, daf16, bec1 and lgg1, while down‐regulate the mRNA expression of daf2 and daf15 in Aβ1‐42 transgenic Celegans. These results suggested that DISS has the protective effect against Aβ1‐42‐induced pathological damages and prolongs the life span of Celegans, which may be related to the reduction of Aβ deposition and neurotoxicity by regulating expression of genes related to antioxidation and autophagy.  相似文献   

12.
The production and aggregation of amyloid β peptides (Aβ) has been linked to the development and progression of Alzheimer's disease. It is apparent that the various structural forms of Aβ can affect cell signalling pathways and the activity of neurons differently. In this study, we investigated the effects of oligomeric and fibrillar aggregates of Aβ 1–42 (Aβ42) and non-aggregated peptide upon activation of the ERK/MAPK signalling pathway. In SH-SY5Y cells, acute exposure to oligomeric Aβ42 led to phosphorylation of ERK1/2 at concentrations as low as 1 nM and up to 100 nM. These changes were detected as early as 5 min following exposure to 100 nM oligomeric Aβ42, reaching a maximum level after 10 min. Phosphorylation of ERK1/2 subsequently declined to and remained at basal levels after 30 min to 2 h of exposure. Fibrillar aggregates of Aβ42 did not significantly induce phosphorylation of ERK1/2 and non-aggregated Aβ42 did not activate the pathway. The effects of oligomeric Aβ42 to increase ERK phosphorylation above basal levels were inhibited by MLA, a specific antagonist of the α7 nAChR. U0126, an inhibitor of MEK, the upstream activator of ERK1/2, completely blocked induction of ERK1/2 phosphorylation. Oligomeric aggregates of Aβ42 are the principal structural form of the peptide that activates ERK/MAPK in SH-SY5Y cells and these effects are mediated by the α7 nAChR.  相似文献   

13.
The mechanism of widespread neuronal death occurring in Alzheimer''s disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury.  相似文献   

14.
A novel β-glucosidase from Fusarium proliferatum ECU2042 (FPG) was successfully purified to homogeneity with a 506-fold increase in specific activity. The molecular mass of the native purified enzyme (FPG) was estimated to be approximately 78.7 kDa, with two homogeneous subunits of 39.1 kDa, and the pI of this enzyme was 4.4, as measured by two-dimensional electrophoresis. The optimal activities of FPG occurred at pH 5.0 and 50 °C, respectively. The enzyme was stable at pH 4.0–6.5 and temperatures below 60 °C, and the deactivation energy (Ed) for FPG was 88.6 kJ mo1−1. Moreover, it was interesting to find that although the purified enzyme exhibited a very low activity towards p-nitrophenyl β-d-glucoside (pNPG), and almost no activity towards cellobiose, a relatively high activity was observed on ginsenoside Rg3. The enzyme hydrolyzed the 3-C, β-(1 → 2)-glucoside of ginsenoside Rg3 to produce ginsenoside Rh2, but did not sequentially hydrolyze the β-d-glucosidic bond of Rh2. The Km and Vmax values of FPG for ginsenoside Rg3 were 2.37 mM and 0.568 μmol (h mg protein)−1, respectively. In addition, this enzyme also exhibited significant activities towards various alkyl glucosides, aryl glucosides and several natural glycosides.  相似文献   

15.
The “unprotected” Pt nanoclusters (average size 2 nm) mixed with the nanoscale SiO2 particles (average size 13 nm) were used as a glucose oxidase immobilization carrier to fabricate the amperometric glucose biosensor. The bioactivity of glucose oxidase (GOx) immobilized on the composite was maintained and the as-prepared biosensor demonstrated high sensitivity (3.85 μA mM−1) and good stability in glucose solution. The Pt–SiO2 biosensor showed a detection limit of 1.5 μM with a linear range from 0.27 to 4.08 mM. In addition, the biosensor can be operated under wide pH range (pH 4.9–7.5) without great changes in its sensitivity. Cyclic voltammetry measurements showed a mixed controlled electrode reaction.  相似文献   

16.
The aggregation of proteins is believed to be intimately connected to many neurodegenerative disorders. We recently reported an “Ockham's razor”/minimalistic approach to analyze the kinetic data of protein aggregation using the Finke–Watzky (F–W) 2-step model of nucleation (A → B, rate constant k1) and autocatalytic growth (A + B → 2B, rate constant k2). With that kinetic model we have analyzed 41 representative protein aggregation data sets in two recent publications, including amyloid β, α-synuclein, polyglutamine, and prion proteins (Morris, A. M., et al. (2008) Biochemistry 47, 2413-2427; Watzky, M. A., et al. (2008) Biochemistry 47, 10790–10800). Herein we use the F–W model to reanalyze protein aggregation kinetic data obtained under the experimental conditions of variable temperature or pH 2.0 to 8.5. We provide the average nucleation (k1) and growth (k2) rate constants and correlations with variable temperature or varying pH for the protein α-synuclein. From the variable temperature data, activation parameters ΔG, ΔH, and ΔS are provided for nucleation and growth, and those values are compared to the available parameters reported in the previous literature determined using an empirical method. Our activation parameters suggest that nucleation and growth are energetically similar for α-synuclein aggregation (ΔGnucleation = 23(3) kcal/mol; ΔGgrowth = 22(1) kcal/mol at 37 °C). From the variable pH data, the F–W analyses show a maximal k1 value at pH ~ 3, as well as minimal k1 near the isoelectric point (pI) of α-synuclein. Since solubility and net charge are minimized at the pI, either or both of these factors may be important in determining the kinetics of the nucleation step. On the other hand, the k2 values increase with decreasing pH (i.e., do not appear to have a minimum or maximum near the pI) which, when combined with the k1 vs. pH (and pI) data, suggest that solubility and charge are less important factors for growth, and that charge is important in the k1, nucleation step of α-synuclein. The chemically well-defined nucleation (k1) rate constants obtained from the F–W analysis are, as expected, different than the 1/lag-time empirical constants previously obtained. However, k2 × [A]0 (where k2 is the rate constant for autocatalytic growth and [A]0 is the initial protein concentration) is related to the empirical constant, kapp obtained previously. Overall, the average nucleation and average growth rate constants for α-synuclein aggregation as a function of pH and variable temperature have been quantitated. Those values support the previously suggested formation of a partially folded intermediate that promotes aggregation under high temperature or acidic conditions.  相似文献   

17.
High dietary intakes and high blood levels of β-carotene are associated with a decreased incidence of various cancers. The anticancer effect of β-carotene is related to its pro-oxidant activity. DNA repair Ku proteins, as a heterodimer of Ku70 and Ku80, play a crucial role in DNA double-strand break repair. Reductions in Ku70/80 contribute to apoptosis. Previously, we showed that reactive oxygen species (ROS) activate caspase-3 which induces degradation of Ku proteins. In the present study, we investigated the mechanism of β-carotene-induced apoptosis of gastric cancer AGS cells by determining cell viability, DNA fragmentation, apoptotic indices (increases in cytochrome c and Bax, decrease in Bcl-2), ROS levels, mitochondrial membrane potential, caspase-3 activity, Ku70/80 levels, and Ku-DNA-binding activity of the cells treated with or without antioxidant N-acetyl cysteine and caspase-3 inhibitor z-DEVED-fmk. As a result, β-carotene induced apoptosis (decrease in cell viability, increases in DNA fragmentation and apoptotic indices) and caspase-3 activation, but decreased Ku70/80 levels and Ku-DNA-binding activity. β-Carotene-induced alterations (increase in caspase-3 activity, decrease in Ku proteins) and apoptosis were inhibited by N-acetyl cysteine and z-DEVED-fmk. Increment of intracellular and mitochondrial ROS levels and loss of mitochondrial membrane potential were suppressed by N-acetyl cysteine, but not by z-DEVED-fmk in β-carotene-treated cells. Therefore, β-carotene-induced increases in ROS and caspase-3 activity may lead to reduction of Ku70/80 levels, which results in apoptosis in gastric cancer cells. Loss of Ku proteins might be the underlying mechanism for β-carotene-induced apoptosis in gastric cancer cells.  相似文献   

18.
The objective of this study was to investigate hormonal and TGF-β1 characterizations of delayed parturition in the SCNT recipients (Korean native beef cattle: Hanwoo). The SCNT blastocysts produced by Hanwoo fetal fibroblast cells were transferred into the synchronized Hanwoo recipients. The artificially inseminated Hanwoo recipients (AI-R) were used as control. All AI-R were labored by natural delivery. The SCNT recipients (SCNT-R) with no signs of delivery were operated by Caesarean section. The blood and placentomes were collected during parturition. The weight of placentomes in SCNT-R (n = 12, 301 ± 41.22 g) was significantly higher than that of AI-R (n = 10, 204.8 ± 24.89 g) (p < 0.05). There were significantly lower E2 (p < 0.05) or higher P4 (p < 0.01) and TGF-β1 (p < 0.01) levels in the SCNT-R compared to that of AI-R, respectively. The SCNT-R showed a higher placentomal TGF-β1 protein level compared to that of AI-R (p < 0.01). Interestingly, the TGF-β1 protein level in SCNT-R with normal delivery was dramatically decreased as same as AI-R, but it was highly maintained in C-sec at days 250 of pregnancy in AI-R. These results suggest that delayed parturition in clone calving may be associated with persistence of elevated TGF-beta-1 expression in late pregnancy.  相似文献   

19.
Current therapeutic approaches under development for Alzheimer disease, including γ-secretase modulating therapy, aim at increasing the production of Aβ1–38 and Aβ1–40 at the cost of longer Aβ peptides. Here, we consider the aggregation of Aβ1–38 and Aβ1–43 in addition to Aβ1–40 and Aβ1–42, in particular their behavior in mixtures representing the complex in vivo Aβ pool. We demonstrate that Aβ1–38 and Aβ1–43 aggregate similar to Aβ1–40 and Aβ1–42, respectively, but display a variation in the kinetics of assembly and toxicity due to differences in short timescale conformational plasticity. In biologically relevant mixtures of Aβ, Aβ1–38 and Aβ1–43 significantly affect the behaviors of Aβ1–40 and Aβ1–42. The short timescale conformational flexibility of Aβ1–38 is suggested to be responsible for enhancing toxicity of Aβ1–40 while exerting a cyto-protective effect on Aβ1–42. Our results indicate that the complex in vivo Aβ peptide array and variations thereof is critical in Alzheimer disease, which can influence the selection of current and new therapeutic strategies.  相似文献   

20.
Abnormal accumulation of Aβ (amyloid β) within AEL (autophagy–endosomal–lysosomal) vesicles is a prominent neuropathological feature of AD (Alzheimer''s disease), but the mechanism of accumulation within vesicles is not clear. We express secretory forms of human Aβ1–40 or Aβ1–42 in Drosophila neurons and observe preferential localization of Aβ1–42 within AEL vesicles. In young animals, Aβ1–42 appears to associate with plasma membrane, whereas Aβ1–40 does not, suggesting that recycling endocytosis may underlie its routing to AEL vesicles. Aβ1–40, in contrast, appears to partially localize in extracellular spaces in whole brain and is preferentially secreted by cultured neurons. As animals become older, AEL vesicles become dysfunctional, enlarge and their turnover appears delayed. Genetic inhibition of AEL function results in decreased Aβ1–42 accumulation. In samples from older animals, Aβ1–42 is broadly distributed within neurons, but only the Aβ1–42 within dysfunctional AEL vesicles appears to be in an amyloid-like state. Moreover, the Aβ1–42-containing AEL vesicles share properties with AD-like extracellular plaques. They appear to be able to relocate to extracellular spaces either as a consequence of age-dependent neurodegeneration or a non-neurodegenerative separation from host neurons by plasma membrane infolding. We propose that dysfunctional AEL vesicles may thus be the source of amyloid-like plaque accumulation in Aβ1–42-expressing Drosophila with potential relevance for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号