首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M?ssbauer spectroscopy has indicated significant differences in the iron-containing cores of various haemosiderins. In the present study, haemosiderin was isolated from a number of animal species including man. In addition, haemosiderin was isolated from patients with primary idiopathic haemochromatosis or with secondary (transfusional) iron-overload. The iron cores of the animal and normal human haemosiderin appear to be very similar by M?ssbauer spectroscopy, and the electron diffraction data indicate a ferrihydrite structure similar to that of ferritin cores. The haemosiderin isolated from secondary iron-overload shows anomalous behaviour in its temperature-dependent M?ssbauer spectra. This can be understood in terms of the microcrystalline goethite structure of the cores as indicated by electron diffraction. The haemosiderin cores obtained in the case of primary haemochromatosis have an amorphous Fe(III) oxide structure and show M?ssbauer spectra characteristic of a magnetically disordered material, which only orders at very low temperatures.  相似文献   

2.
The changes observed photosystem I activity of lettuce plants exposed to iron deficiency were investigated. Photooxidation/reduction kinetics of P700 monitored as ΔA820 in the presence and absence of electron transport inhibitors and acceptors demonstrated that deprivation in iron decreased the population of active photo-oxidizable P700. In the complete absence of iron, the addition of plant inhibitors (DCMU and MV) could not recover the full PSI activity owing to the abolition of a part of P700 centers. In leaves with total iron deprivation (0 μM Fe), only 15% of photo-oxidizable P700 remained. In addition, iron deficiency appeared to affect the pool size of NADP+ as shown by the decline in the magnitude of the first phase of the photooxidation kinetics of P700 by FR-light. Concomitantly, chlorophyll content gradually declined with the iron concentration added to culture medium. In addition, pronounced changes were found in chlorophyll fluorescence spectra. Also, the global fluorescence intensity was affected. The above changes led to an increased rate of cyclic electron transport around PSI mainly supported by stromal reductants.  相似文献   

3.
Free iron concentration, as determined by electron paramagnetic resonance (EPR) spectroscopy, and lipid peroxidation (LPO), as determined by thiobarbituric acid test, were assessed in the lung, heart, liver, spleen, brain and kidney of rats subjected to experimental iron overload. Two tests, Desferal- and NO-available iron, were used to measure free iron and gave comparable results. The most pronounced accumulation of free iron was observed in liver, kidney and spleen. Differences between control and iron loaded animals increased during the initial 90 days of treatment. Between 90 and 180 days free iron concentration reached a steady state level, or even decreased, as in the case of liver. Lipid peroxidation level, measured in the organs of both treated and matched controls, did not give any significant difference during the initial 90 days of treatment. A significant augmentation was observed in liver, kidney, spleen and heart at 180 days. The results of the present research show that, under conditions of moderate siderosis, the occurrence of LPO is partially related to the level of free iron.  相似文献   

4.
1. Mössbauer spectra were measured of adrenodoxin purified from porcine adrenal glands. They show similarities to the spectra of the plant ferredoxins. All of these proteins contain two atoms of iron and two of inorganic sulphide per molecule, and on reduction accept one electron. 2. As with the plant ferredoxins the adrenodoxin for these measurements was enriched with 57Fe by reconstitution of the apo-protein, and subsequently was carefully purified and checked by a number of methods to ensure that it was in the same conformation as the native protein and contained no extraneous iron. 3. The Mössbauer spectra of oxidized adrenodoxin at temperatures from 4.2°K to 197°K show that the iron atoms are probably high-spin Fe3+, and in similar environments, and experience little or no magnetic field from the electrons. 4. Mössbauer spectra of reduced adrenodoxin showed magnetic hyperfine structure at all temperatures from 1.7°K to 244°K, in contrast with the reduced plant ferredoxins, which showed it only at lower temperatures. This is a consequence of a longer electron-spin relaxation time in reduced adrenodoxin. 5. At 4.2°K in a small magnetic field the spectrum of reduced adrenodoxin shows a sixline Zeeman pattern due to Fe3+ superimposed upon a combined magnetic and quadrupole spectrum due to Fe2+. 6. In a large magnetic field (30kG) each hyperfine pattern is further split into two. Analysis of these spectra at 4.2°K and 1.7°K shows that the effective fields at the Fe3+ and Fe2+ nuclei are in opposite directions. This agrees with the proposal, first made for the ferredoxins, that the iron atoms are antiferromagnetically coupled. 7. In accord with the model for the ferredoxins, it is proposed that the oxidized adrenodoxin contains two high-spin Fe3+ atoms which are antiferromagnetically coupled; on reduction one iron atom becomes high-spin Fe2+.  相似文献   

5.
6.
7.
8.
This review is an attempt to retrace the chronicle of the discovery of the role of high-potential iron–sulfur proteins (HiPIPs) as electron carriers in the photosynthetic chain of bacteria. Data and facts are presented through the magnifying lenses of the authors, using their best judgment to filter and elaborate on the many facets of the research carried out on this class of proteins over the years. The tale is divided into four main periods: the seeds, the blooming, the ripening, and the harvest, representing the times from the discovery of these proteins to the most recent advancements in the understanding of the relationship between their structure and their function.  相似文献   

9.
1. The Mössbauer spectra of Scenedesmus ferredoxin enriched in 57Fe were measured and found to be identical with those of two other plant-type ferredoxins (from spinach and Euglena) that had been previously measured. Better resolved Mössbauer spectra of spinach ferredoxin are also reported from protein enriched in 57Fe. All these iron–sulphur proteins are known to contain two iron atoms in a molecule that takes up one electron on reduction. 2. The Mössbauer spectra at 195°K have electric hyperfine structure only and show that on reduction the electron goes to one of the iron atoms, the other appearing to remain unchanged. 3. In the oxidized state, both iron atoms are in a similar chemical state, which appears from the chemical shift and quadrupole splitting to be high-spin Fe3+, but they are in slightly different environments. In the reduced state the iron atoms are different and the molecule appears to contain one high-spin Fe2+ and one high-spin Fe3+ atom. 4. At lower temperatures (77 and 4.2°K) the spectra of both iron atoms in the reduced proteins show magnetic hyperfine structure which suggests that the iron in the oxidized state also has unpaired electrons. This provides experimental evidence for earlier suggestions that in the oxidized state there is antiferromagnetic exchange coupling, which would result in a low value for the magnetic susceptibility. 5. In a small magnetic field the spectrum of the reduced ferredoxin shows a Zeeman splitting with hyperfine field (Hn) of 180kG at the nuclei. On application of a strong magnetic field H the spectrum splits into two spectra with effective fields Hn±H, thus confirming the presence of the two antiferromagnetically coupled iron atoms. 6. These results are in agreement with the model proposed by Gibson, Hall, Thornley & Whatley (1966); in the oxidized state there are two Fe3+ atoms (high spin) antiferromagnetically coupled and on reduction of the ferredoxin by one electron one of the ferric atoms becomes Fe2+ (high spin).  相似文献   

10.
Indicators of maternal iron (Fe) status were studied in relation to placental Fe (Pl-Fe) status. Placental (Pl) and maternal (M) venous blood samples were obtained from primiparous women (n=38), with normal delivery at Paroissien Hospital, Argentina. Maternal hemoglobin (M Hb), soluble transferrin receptor (M sTfR) (ELISA) and serum ferritin (M S-Ft) were studied in relation to Pl-Fe, ferritin (Pl-Ft) and transferrin receptor (Pl-TfR). Pl-TfR was measured by dot blot assay, Pl-Ft and M S-Ft by immunoassay (IRMA) and Pl-Fe by atomic absorption spectrometry. Fe status indicators were, respectively, (mean±SD): M Hb 113±16 g/L; M S-Ft 36±42 μg/L; M sTfR 6.3±3.1 mg/L; Pl-Fe 170±56 μg/g placenta; Pl-Ft 33±18 μg/g placenta; Pl-TfR 18±18 (range 0–58) μg/g placenta. Pl-Fe, Pl-Ft and Pl-TfR did not correlate to M Hb, M S-Ft and M sTfR. Women with Pl- Fe, Pl-Ft and Pl-TfR above or below the corresponding median values did not show any statistical significant difference in M Hb, M sTfR or M S-Ft values. Pl-Ft concentration was lower in women with Hb<110 g/L than in women with normal values: 26±13 vs. 38±20 μg/g, respectively (p=0.021). When Pl-TfR, Pl-Ft and Pl-Fe were compared in women with M S-Ft above or below the cut-off point of 10 or 20 μg/L, no significant difference was found for Pl-TfR neither for Pl-Ft nor Pl-Fe. These results suggest that maternal indicators of Fe status, particularly M sTfR and M S-Ft, do not reflect Fe status of the placenta at delivery.  相似文献   

11.
Phototrophs of the family Heliobacteriaceae contain the simplest known Type I reaction center (RC), consisting of a homodimeric (PshA)2 core devoid of bound cytochromes and antenna proteins. Unlike plant and cyanobacterial Photosystem I in which the FA/FB protein, PsaC, is tightly bound to P700–FX cores, the RCs of Heliobacterium modesticaldum contain two FA/FB proteins, PshBI and PshBII, which are loosely bound to P800–FX cores. These two 2[4Fe–4S] ferredoxins have been proposed to function as mobile redox proteins, reducing downstream metabolic partners much in the same manner as does [2Fe–2S] ferredoxin or flavodoxin (Fld) in PS I. Using P800–FX cores devoid of PshBI and PshBII, we show that iron–sulfur cluster FX directly reduces Fld without the involvement of FA or FB (Fld is used as a proxy for soluble redox proteins even though a gene encoding Fld is not identified in the H. modesticaldum genome). The reduction of Fld is suppressed by the addition of PshBI or PshBII, an effect explained by competition for the electron on FX. In contrast, P700–FX cores require the presence of the PsaC, and hence, the FA/FB clusters for Fld (or ferredoxin) reduction. Thus, in H. modesticaldum, the interpolypeptide FX cluster serves as the terminal bound electron acceptor. This finding implies that the homodimeric (PshA)2 cores should be capable of donating electrons to a wide variety of yet-to-be characterized soluble redox partners.  相似文献   

12.
Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31–39CCX35–36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) 57Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four 57Fe hyperfine couplings to the cluster in all three proteins. 13C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. 57Fe resonances in all three systems revealed unusually large 57Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster’s unique magnetic properties arise from the CCG binding motif.  相似文献   

13.
There are major differences in the temperature dependence of the Mössbauer spectra of ferritin and haemosiderin extracted from the organs of humans suffering from transfusional iron overload. Iron overload can also occur in animal systems as a result of artificial treatments or dietary factors. None of the animal systems which were investigated in the present study showed evidence in their Mössbauer spectra for the presence of the haemosiderin found in transfusional iron overload in humans. This suggests that the haemosiderin which occurs in the case of human transfusional iron overload may be specific to that situation.  相似文献   

14.
Chang-An Yu  Xiaowei Cen  He-Wen Ma  Ying Yin  Linda Yu  Lothar Esser  Di Xia 《BBA》2008,1777(7-8):1038-1043
Intensive biochemical, biophysical and structural studies of the cytochrome (cyt) bc1 complex in the past have led to the formulation of the “protonmotive Q-cycle” mechanism for electron and proton transfer in this vitally important complex. The key step of this mechanism is the separation of electrons during the oxidation of a substrate quinol at the QP site with both electrons transferred simultaneously to ISP and cyt bL when the extrinsic domain of ISP (ISP-ED) is located at the b-position. Pre-steady state fast kinetic analysis of bc1 demonstrates that the reduced ISP-ED moves to the c1-position to reduce cyt c1 only after the reduced cyt bL is oxidized by cyt bH. However, the question of how the conformational switch of ISP-ED is initiated remains unanswered. The results obtained from analysis of inhibitory efficacy and binding affinity of two types of QP site inhibitors, Pm and Pf, under various redox states of the bc1 complex, suggest that the electron transfer from heme bL to bH is the driving force for the releasing of the reduced ISP-ED from the b-position to c1-position to reduce cyt c1.  相似文献   

15.
Myotonic dystrophy kinase-related Cdc42-binding kinase α (MRCKα, formally known as CDC42BPA) is a serine/threonine kinase that can regulate actin/myosin assembly and activity. Recently, it has been shown that it possesses a functional iron responsive element (IRE) in the 3′-untranslated region (UTR) of its mRNA, suggesting that it may be involved in iron metabolism. Here we report that MRCKα protein expression is also regulated by iron levels; MRCKα colocalizes with transferrin (Tf)-loaded transferrin receptors (TfR), and attenuation of MRCKα expression by a short hairpin RNA silencing construct leads to a significant decrease in Tf-mediated iron uptake. Our results thus indicate that MRCKα takes part in Tf-iron uptake, probably via regulation of Tf-TfR endocytosis/endosome trafficking that is dependent on the cellular cytoskeleton. Regulation of the MRCKα activity by intracellular iron levels could thus represent another molecular feedback mechanism cells could use to finely tune iron uptake to actual needs.  相似文献   

16.
Accumulated evidence indicates that the interconversion of iron between ferric (Fe3+) and ferrous (Fe2+) can be realized through interaction with reactive oxygen species in the Fenton and Haber–Weiss reactions and thereby physiologically effects redox cycling. The imbalance of iron and ROS may eventually cause tissue damage such as renal proximal tubule injury and necrosis. Many approaches were exploited to ameliorate the oxidative stress caused by the imbalance. (?)-Epigallocatechin-3-gallate, the most active and most abundant catechin in tea, was found to be involved in the protection of a spectrum of renal injuries caused by oxidative stress. Most of studies suggested that EGCG works as an antioxidant. In this paper, Multivariate analysis of the LC–MS data of tea extracts and binding assays showed that the tea polyphenol EGCG can form stable complex with iron through the protein Ngal, a biomarker of acute kidney injury. UV–Vis and Luminescence spectrum methods showed that Ngal can inhibit the chemical reactivity of iron and EGCG through forming an Ngal–EGCG–iron complex. In thinking of the interaction of iron and ROS, we proposed that EGCG may work as both antioxidant and Ngal binding siderphore in protection of kidney from injuries.  相似文献   

17.
The love-hate relationship between iron and living matter has generated mechanisms to maintain iron concentration in a narrow range, above and below which deleterious effects occur. At the cellular level, iron homeostasis is accomplished by the activity of the IRP proteins, which, under conditions of iron depletion, up-regulate the expression of the iron acquisition proteins TfR and DMT1. It has been shown that hydrogen peroxide activates IRP1 and that this activation mediates a potentially harmful increase in cell iron uptake. Here we show that IRP1 activity is also induced by iron-mediated oxidative stress. When cells were incubated with up to 20 M of iron, a typical decrease in IRP1 and IRP2 activity was observed. Interestingly, when iron was further increased to 40 or 80 M, IRP1 was reactivated in three of the four different cell lines tested, i.e., Caco-2 cells, N2A cells and HepG2 cells. In the fourth cell line (K562) IRP1 activity did not increase, but neither did it decrease. This response to iron was largely abrogated when the antioxidant N-acetyl cysteine was added along with iron to the culture medium. Thus, the effect of iron was mediated by oxidative stress. Increases in IRP1 activity were accompanied by increases in cell iron uptake, an indication that the activated IRP1 was functional in the activation of iron uptake. Hence, this iron-induced iron uptake feedback loop results in the increase of intracellular iron and increased oxidative stress.  相似文献   

18.
This communication addresses a simple question by means of density functional calculations: Why is iron used as the metal in iron-sulfur clusters? While there may be several answers to this question, it is shown here that one feature - the well-defined inner-sphere reorganization energy of self-exchange electron transfer - is very much favored in iron-sulfur clusters as opposed to metal substituted analogues of Mn, Co, Ni, and Cu. Furthermore, the conclusion holds for both 1Fe and 2Fe type iron-sulfur clusters. The results show that only iron provides a small inner-sphere reorganization energy of 21 kJ/mol in 1Fe (rubredoxin) and 46 kJ/mol in 2Fe (ferredoxin) models, whereas other metal ions exhibit values in the range 57-135 kJ/mol (1Fe) and 94-140 kJ/mol (2Fe). This simple result provides an important, although partial, explanation why iron alone is used in this type of clusters. The results can be explained by simple orbital rules of electron transfer, which state that the occupation of anti-bonding orbitals should not change during the redox reactions. This rule immediately suggests good and poor electron carriers.  相似文献   

19.
A versatile methodology for electron microscopy (EM) grid preparation enabling total content sample analysis is presented. A microfluidic-dialysis conditioning module to desalt or mix samples with negative stain solution is used, combined with a robotic writing table to micro-pattern the EM grids. The method allows heterogeneous samples of minute volumes to be processed at physiological pH for structure and mass analysis, and allows the preparation characteristics to be finely tuned.  相似文献   

20.
The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron–electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4′ of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号