首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Predicted values of photoequilibrium ratios and rates of photoconversion and cycling, calculated from known optical parameters of purified phytochrome and the spectral photon flux distribution of the light sources used, arc often applied in the evaluation of the relationships between the state of phytochrome and the expression of phytochrome-mediated responses. This is commonly done when the state of phytochrome in vivo cannot be determined experimentally. The ‘predicted’ states of phytochrome may be quite different from the actual ones in vivo for several reasons: the particular set of optical parameters of purified phytochrome used in the calculations and the difficulties encountered in correcting the predicted values for the contribution of the non-photochemical reactions (dark reversion, destruction, synthesis), the effects of the optical properties of the tissue (light attenuation, scattering, trapping) on the rate of phytochrome photo-conversion, and the geometrical relationships between irradiated sample and the light source. At present, in many studies, it is not possible to avoid using predicted values of the state of phytochrome. The limitations imposed by the use of ‘predicted’ values in the interpretation of results obtained in plant photomorphogenesis research should be always clearly stated.  相似文献   

2.
Summary Using the in vivo density labeling technique with deuterium oxide it is confirmed that during phytochrome mediated photomorphogenesis in mustard seedlings a true de novo synthesis of phenylalanine ammonia-lyase is induced by active phytochrome (P fr).  相似文献   

3.
In rice seedlings, elongation of leaf sheaths is suppressed by light stimuli. The response is mediated by two classes of photoreceptors, phytochromes and cryptochromes. However, it remains unclear how these photoreceptors interact in the process. Our recent study using phytochrome mutants and novel cryptochrome RNAi lines revealed that cryptochromes and phytochromes function cooperatively, but independently to reduce active GA contents in seedlings in visible light. Blue light captured by cryptochrome 1 (cry1a and cry1b) induces robust expression of GA 2-oxidase genes (OsGA2ox4-7). In parallel, phytochrome B with auxiliary action of phytochrome A mediates repression of GA 20-oxidase genes (OsGA20ox2 and OsGA20ox4). The independent effects cumulatively reduce active GA contents, leading to a suppression of leaf sheath elongation. These regulatory mechanisms are distinct from phytochrome B function in dicots. We discuss reasons why the distinct system appeared in rice, and advantages of the rice system in early photomorphogenesis.  相似文献   

4.
We isolated a new pea mutant that was selected on the basis of pale color and elongated internodes in a screen under white light. The mutant was designated pcd1 for phytochrome chromophore deficient. Light-grown pcd1 plants have yellow-green foliage with a reduced chlorophyll (Chl) content and an abnormally high Chl a/Chl b ratio. Etiolated pcd1 seedlings are developmentally insensitive to far-red light, show a reduced response to red light, and have no spectrophotometrically detectable phytochrome. The phytochrome A apoprotein is present at the wild-type level in etiolated pcd1 seedlings but is not depleted by red light treatment. Crude phytochrome preparations from etiolated pcd1 tissue also lack spectral activity but can be assembled with phycocyanobilin, an analog of the endogenous phytochrome chromophore phytochromobilin, to yield a difference spectrum characteristic of an apophytochrome-phycocyanobilin adduct. These results indicate that the pcd1-conferred phenotype results from a deficiency in phytochrome chromophore synthesis. Furthermore, etioplast preparations from pcd1 seedlings can metabolize biliverdin (BV) IX[alpha] but not heme to phytochromobilin, indicating that pcd1 plants are severely impaired in their ability to convert heme to BV IX[alpha]. This provides clear evidence that the conversion of heme to BV IX[alpha] is an enzymatic process in higher plants and that it is required for synthesis of the phytochrome chromophore and hence for normal photomorphogenesis.  相似文献   

5.
Inhibition of phytochrome synthesis by gabaculine   总被引:3,自引:1,他引:2       下载免费PDF全文
Gabaculine (5-amino-1,3-cyclohexadienylcarboxylic acid), a transaminase inhibitor, also inhibits chlorophyll formation in plants, and the effect of this compound can be counteracted by 5-aminolevulinic acid (ALA) (Flint, personal communication, 1984). Since it is probable that ALA also serves as a precursor to phytochrome, the effects of gabaculine on phytochrome synthesis in developing etiolated seedlings were examined using in vivo spectrophotometry. Preemergence treatment with gabaculine was found to inhibit initial phytochrome synthesis in peas (Pisum sativum L.), corn (Zea mays L.), and oats (Avena sativa L.). In general, reduction in phytochrome correlated with reduction in chlorophyll. However, the extent of inhibition of phytochrome synthesis was not as great as that of chlorophyll synthesis, perhaps due to preexisting phytochrome in the seed. Foliar treatment of etiolated pea seedlings prior to light-induced destruction of phytochrome inhibited subsequent phytochrome resynthesis in the dark. These results suggest that both initial synthesis and resynthesis of phytochrome require de novo synthesis of chromophore as well as apoprotein.  相似文献   

6.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

7.
Plants have evolved a remarkable capacity to track and respond to fluctuations of light quality and intensity that influence photomorphogenesis facilitated through several photoreceptors, which include a small family of phytochromes. Rice seedlings grown on germination paper in red light for 48 h having their shoot bottom exposed had suppressed photomorphogenesis and were deficient in chlorophyll. Seedlings grown under identical light regime having their shoot bottom covered were green and accumulated chlorophyll. Further, etiolated seedlings with their shoot bottom exposed, when grown in 4 min red/far‐red cycles for 48 h, accumulated chlorophyll demonstrating the reversal of suppression of photomorphogenesis by far‐red light. It implicates the involvement of phytochrome. Immunoblot analysis showed the persistence of photolabile phytochrome A protein for 48 h in seedlings grown in red light with their shoot bottom exposed, suggesting its involvement in suppression of photomorphogenesis. This was further corroborated in phyA seedlings that turned green when grown in red light having their shoot bottom exposed. Calmodulin (CaM) antagonist N‐(6‐aminohexyl)‐5‐chloro‐1‐napthalene sulphonamide or trifluoperazine substantially restored photomorphogenesis both in the wild type (WT) and phyA demonstrating the involvement of CaM‐dependent kinases in the down‐regulation of the greening process. Results demonstrate that red light‐induced suppression of photomorphogenesis, perceived in the shoot bottom, is a red high irradiance response of PhyA.  相似文献   

8.
Measurements of phytochrome photoequilibria and photoconversion rates in vivo, in seedlings of Cucurbita pepo L. exposed to light in growth chambers, indicate that significant changes in the state of phytochrome can be brought about by changes in the quality and quantity of the light reflected from the walls of the growth chambers. The changes in reflected light, although large, were small in terms of the total radiation (direct light from the lamps plus wall-reflected light) to which the seedlings were exposed. The conditions used were approximate simulations of direct and reflected sunlight conditions in the natural environment. Keeping in mind the limitations imposed by the approximation of the simulations, the results from this study are consistent with the hypothesis that, in the natural environment, a plant might be capable of detecting the presence of nearby plants, before being shaded by them, through the phytochrome-mediated perception of changes in reflected light.  相似文献   

9.
In vitro data support a scheme of phytochrome phototransformation involving intermediates in a sequential pathway. The fraction of total phytochrome maintained as intermediate under conditions of pigment cycling as well as the rate of the dark reversion of the far red-absorbing (Pfr) to the red-absorbing form of phytochrome (Pr) has been shown to depend on the molecular environment of the phytochrome molecules. Inverse dark reversion of Pr to Pfr has been observed in vitro. These results contribute toward an understanding of the observed paradoxes between physiological experiments and measurements of the amount and state of phytochrome in vivo. The in vivo spectrophotometric assay measures an average of the properties of phytochrome in different cellular environments, whereas a particular physiological response may be controlled by phytochrome molecules in one particular environment. It is therefore possible that all phytochrome is potentially active and triggers specific responses by virtue of its localization.  相似文献   

10.
Some spectral properties of pea phytochrome in vivo and in vitro   总被引:7,自引:5,他引:2       下载免费PDF全文
The transformation difference spectrum for phytochrome (Pr spectrum minus Pfr spectrum) in pea tissue is determined below 560 nanometers and compared with similar data on phytochrome in vitro The difference spectrum in vivo between phytochrome intermediates and Pfr is also shown for comparison with the data on phytochrome solutions. These comparisons show that the peaks in the spectra occurring in the blue wave lengths are shifted to shorter wave lengths and are much enhanced when phytochrome is extracted from the cell and placed in solution. The results indicate that the physicochemical state of phytochrome in the cell may be different from that of the extracted pigment.  相似文献   

11.
UV-B-induced photomorphogenesis in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Relatively little is known about the types of photomorphogenic responses and signal transduction pathways that plants employ in response to ultraviolet-B (UV-B, 290–320 nm) radiation. In wild-type Arabidopsis seedlings, hypocotyl growth inhibition and cotyledon expansion were both reproducibly promoted by continuous UV-B. The fluence rate response of hypocotyl elongation was examined and showed a biphasic response. Whereas photomorphogenic responses were observed at low doses, higher fluences resulted in damage symptoms. In support of our theory that photomorphogenesis, but not damage, occurs at low doses of UV-B, photomorphogenic responses of UV-B sensitive mutants were indistinguishable from wild-type plants at the low dose. This allowed us to examine UV-B-induced photomorphogenesis in photoreceptor deficient plants and constitutive photomorphogenic mutants. The cry1 cryptochrome structural gene mutant, and phytochrome deficient hy1, phyA and phyB mutant seedlings resembled wild-type seedlings, while phyA/phyB double mutants were less sensitive to the photomorphogenic effects of UV-B. These results suggest that either phyA or phyB is required for UV-B-induced photomorphogenesis. The constitutive photomorphogenic mutants cop1 and det1 did not show significant inhibition of hypocotyl growth in response to UV-B, while det2 was strongly affected by UV-B irradiation. This suggests that COP1 and DET1 work downstream of the UV-B signaling pathway.  相似文献   

12.
The characteristics of the high-irradiance response (HIR) of plant photomorphogenesis are thought to be the result of the interaction of both the light and dark reactions of phytochrome. Thus any variation in the rates of the dark reactions may be expected to lead to variation in the characteristics of the HIR. We report here substantial differences in the rates of the dark reactions between different seed batches of a single species (Sinapis alba L.), and also between different organs of seedlings from each of the batches of seed. Calculations of phytochrome dynamics from the measured dark-reaction rates show that the behaviour of Pfr under HIR conditions will vary considerably according to seed batch and seedling organ. Much larger differences in dark-reaction rates, and the resulting phytochrome dynamics, were found between 25° and 10° C. These lead to the prediction that the HIR will be much reduced at the lower temperature, and may be absent in some cases.Abbreviations and symbols HIR high-irradiance response - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - Ptot total phytochrome, Pr+Pfr - ss Pfr/Ptot ratio which immediately establishes the phytochrome steady state  相似文献   

13.
The measured rates of phytochrome photoconversion in vivo, in etiolated cabbage (Brassica oleracea L.) seedlings and cucumber (Cucumis sativus L.) cotyledons, under blue, red, and far red irradiation, are significantly different from those predicted on the basis of the spectral photon flux distributions of the light sources and optical parameters of purified phytochrome. The geometrical relationships between the light source and the irradiated sample affect the rate of phytochrome photoconversion, which is significantly faster in cabbage seedling laying flat on white, wet filter paper than in seedlings in a vertical position. Light reflected from the white filter paper on the bottom of the dish contributes significantly to phytochrome photoconversion. Substituting the white filter paper with a less reflective black one results in a significant decrease of the rate of phytochrome photoconversion in cucumber cotyledons.  相似文献   

14.
In Vivo Properties of Membrane-bound Phytochrome   总被引:9,自引:7,他引:2       下载免费PDF全文
After a 3-minute irradiation with red light, which saturates the phototransformation from the red light-absorbing form of phytochrome to the far red light absorbing form of phytochrome, about 40% of the phytochrome extractable from hooks of etiolated squash seedlings (Cucurbita pepo L. cv. Black Beauty) can be pelleted as Pfr at 17,000g after 30 minutes. Dark controls yield only 2 to 4% pelletable phytochrome in the form Pr. If a dark period intervenes between red irradiation and extraction, the bound Pfr gradually loses its photoreversibility. The time course for this destruction parallels the time course for phytochrome destruction in vivo following saturating red irradiation. The soluble fraction of phytochrome remains constant. These results suggest that in squash seedlings phytochrome destruction is related exclusively to the fraction which becomes membrane-bound. The induction of phytochrome binding by red light is not completely reversible by far red. In plants given saturating red followed immediately by saturating far red light, 12% of the phytochrome is found in the bound fraction as Pr if the phytochrome extraction is immediate. If a dark period intervenes between red-far red treatment and extraction, the bound phytochrome is released within 2 hours. A model of the binding properties of phytochrome, based on molecular interaction at the membrane is proposed, and possible consequences for the mechanism of action of phytochrome are discussed.  相似文献   

15.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

16.
Four Nicotiana plumbaginifolia mutants exhibiting long hypocotyls and chlorotic cotyledons under white light, have been isolated from M2 seeds following mutagenesis with ethyl methane sulphonate. In each of these mutants, this partly etiolated in white light (pew) phenotype is due to a recessive nuclear mutation at a single locus. Complementation analysis indicates that three mutants, dap5, ems28 and ems3-6-34, belong to a single complementation group called pew1, while dap1 defines the pew2 locus. The mutants at pew1 contain normal levels of immunochemically detectable apoprotein of the phytochrome that is relatively abundant in etiolated seedlings, but are deficient in spectrophotometrically detectable phytochrome, whether seedlings are grown in darkness or light. Moreover, biliverdin, a precursor of the phytochrome chromophore, restores light-regulated responses in pew1 mutants and increases their level of photoreversible phytochrome when grown in darkness. These results indicate that the pew1 locus may be involved in chromophore biosynthesis. The mutant at the pew2 locus displays no photoreversible phytochrome in etiolated seedlings, but does contain normal levels of photoreversible phytochrome when grown in the light. Biliverdin had little effect on light-regulated responses in this mutant. In addition, biliverdin did not alter the level of phytochrome in etiolated seedlings. These observations lead us to propose that this mutant could be affected in the phyA gene itself. We have also obtained the homozygous double mutant at the pew1 and pew2 loci. This double mutant is lethal at an early stage of development, consistent with a critical role for phytochrome in early development of higher plants.  相似文献   

17.
When dark-grown cucumber (Cucumis sativus L.) seedlings previously exposed to white light for 20 hours were returned to darkness, the ability of isolated chloroplasts to synthesize 5-aminolevulinic acid dropped by approximately 70% within 1 hour. The seedlings were then exposed to light, and the synthetic ability of the isolated chloroplasts was determined. Restoration of the synthetic capacity was promoted by continuous white or red light of moderate intensity. Intermittent red light was also effective. Blue and far-red light did not restore the synthetic capability. Blue light given after a red pulse did not enhance the effect of the red light. Far-red light given immediately after each red pulse prevented the stimulation due to intermittent red light. Restoration of the biosynthetic activity by in vivo light treatments was inhibited by cycloheximide indicating the requirement for translation on 80 S ribosomes for the in vivo light response. These findings suggest that the majority of the plastidic 5-aminolevulinic acid synthesis is under phytochrome regulation.  相似文献   

18.
Photomorphogenetic responses have been studied in a cucumber (Cucumis sativus L.) mutant (lh), which has long hypocotyls in white light (WL). While etiolated seedlings of this mutant have a similar phytochrome content and control of hypocotyl elongation as wild type, deetiolation is retarded and WL-grown seedlings show reduced phytochrome control. Spectrophotometric measurements exhibit that WL-grown tissues of the lh mutant (flower petals and Norflurazon-bleached leaves) contain 35 to 50% of the phytochrome level in the wild type. We propose that this is a consequence of a lack of light-stable phytochrome, in agreement with our hypothesis proposed on the basis of physiological experiments. The lh mutant lacks an end-of-day far-red light response of hypocotyl elongation. This enables the end-of-day far-red light response, clearly shown by the wild type, to be ascribed to the phytochrome, deficient in the lh mutant. Growth experiments in continuous blue light (BL) and continuous BL + red light (RL) show that when RL is added to BL, hypocotyl growth remains inhibited in the wild type, whereas the lh mutant exhibits significant growth promotion compared to BL alone. It is proposed that the hypocotyls fail to grow long in low fluence rate BL because photosynthesis is insufficient to sustain growth.  相似文献   

19.
In seedlings of Raphanus sativus (radish) and Sinapis alba (mustard), irradiation for 6 hours with far red light significantly increases the extractable activity of phenylalanine ammonia-lyase by the end of the light period. A schedule of 10 minutes red light-110 minutes darkness-10 minutes red-110 minutes darkness-10 minutes red-110 minutes darkness has no effect as compared to dark controls. However, the red light program maintains a level of far red-absorbing phytochrome always measurable by in vivo spectrophotometry during the 6-hour experimental period. We conclude that the far red effect on this enzyme and for this specific material cannot be explained solely by formation and maintenance of far red-absorbing phytochrome.  相似文献   

20.
De novo synthesis of phytochrome in pumpkin hooks   总被引:6,自引:2,他引:4       下载免费PDF全文
Phytochrome becomes density labeled in the hook of pumpkin (Cucurbita pepo L.) seedlings grown in the dark on D2O, indicating that the protein moiety of the pigment is synthesized de novo during development. Red light causes a rapid decline of the total phytochrome level in the hook of etiolated seedlings but upon return to the dark, phytochrome again accumulates. These newly appearing molecules are also synthesized de novo. Newly synthesized phytochrome in both dark-grown and red-irradiated seedlings is in the red-absorbing form. Turnover of the red-absorbing form is indicated by the density labeling of phytochrome during a period when the total phytochrome level in the hook of dark-grown seedlings remains constant. However, it was not possible to determine whether this results from intracellular turnover or turnover of the whole cell population during hook growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号