首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in the pancreas of over 90% of all cases of type-2 diabetes. We have generated a series of overlapping hexapeptides to target an amyloidogenic region of IAPP (residues 20-29) and examined their effects on fibril assembly. Peptide fragments corresponding to SNNFGA (residues 20-25) and GAILSST (residues 24-29) were strong inhibitors of the beta-sheet transition and amyloid aggregation. Circular dichroism indicated that even at 1:1 molar ratios, these peptides maintained full-length IAPP (1-37) in a largely random coil conformation. Negative stain electron microscopy revealed that co-incubation of these peptides with IAPP resulted in the formation of only semi-fibrous aggregates and loss of the typical high density and morphology of IAPP fibrils. This inhibitory activity, particularly for the SNNFGA sequence, also correlated with a reduction in IAPP-induced cytotoxicity as determined by cell culture studies. In contrast, the peptide NFGAIL (residues 22-27) enhanced IAPP fibril formation. Conversion to the amyloidogenic beta-sheet was immediate and the accompanying fibrils were more dense and complex than IAPP alone. The remaining peptide fragments either had no detectable effects or were only weakly inhibitory. Specificity of peptide activity was illustrated by the fragments, SSNNFG and AILSST. These differed from the most active inhibitors by only a single amino acid residue but delayed the random-to-beta conformational change only when used at higher molar ratios. This study has identified internal IAPP peptide fragments which can regulate fibrillogenesis and may be of therapeutic use for the treatment of type-2 diabetes.  相似文献   

2.
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases.  相似文献   

3.
Amyloid aggregates have been recognized to be a pathological hallmark of several fatal diseases, including Alzheimer's disease, the prion-related diseases, and type II diabetes. Pancreatic amyloidosis is characterized by the deposition of amyloid consisting of islet amyloid polypeptide (IAPP). We followed the steps preceding IAPP insolubilization and amyloid formation in vitro using a variety of biochemical methods, including a filtration assay, far and near-UV circular dichroism (CD) spectropolarimetry, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and atomic force (AFM) and electron (EM) microscopy. IAPP insolubilization and amyloid formation followed kinetics that were consistent with the nucleation-dependent polymerization mechanism. Nucleation of IAPP amyloid formation with traces of preformed fibrils induced a rapid conformational transition into beta-sheets that subsequently aggregated into insoluble amyloid fibrils. Transition proceeded via a molten globule-like conformeric state with large contents of secondary structure, fluctuating tertiary and quaternary aromatic interactions, and strongly solvent-exposed hydrophobic patches. In the temperature denaturation pathway at 5 microM peptide, we found that this state was mostly populated at about 45 degrees C, and either aggregated rapidly into amyloid by prolonged exposure to this temperature, or melted into denaturated but still structured IAPP, when heated further to 65 degrees C. The state at 45 degrees C was also found to be populated at 4.25 M GdnHCl at 25 degrees C during GdnHCl-induced equilibrium denaturation, and was stable in solution for several hours before aggregating into amyloid fibrils. Our studies suggested that this amyloidogenic state was a self-associated form of an aggregation-prone, partially folded state of IAPP. We propose that this partially folded population and its self-associated forms are in a concentration-dependent equilibrium with a non-amyloidogenic IAPP conformer and may act as early, soluble precursors of beta-sheet and amyloid formation. Our findings on the molecular mechanism of IAPP amyloid formation in vitro should assist in gaining insight into the pathogenesis and inhibition of pancreatic amyloidosis and other amyloid-related diseases.  相似文献   

4.
Pancreatic amyloid plaques formed by the pancreatic islet amyloid polypeptide (IAPP) are present in more than 95% of type II diabetes mellitus patients, and their abundance correlates with the severity of the disease. IAPP is currently considered the most amyloidogenic peptide known, but the molecular bases of its aggregation are still incompletely understood. Detailed characterization of the mechanisms of amyloid formation requires large quantities of pure material. Thus, availability of recombinant IAPP in sufficient amounts for such studies constitutes an important step toward elucidation of the mechanisms of amyloidogenicity. Here, we report, for the first time, the successful expression, purification and characterization of the amyloidogenicity and cytotoxicity of recombinant human mature IAPP. This approach is likely to be useful for the production of other amyloidogenic peptides or proteins that are difficult to obtain by chemical synthesis.  相似文献   

5.
The polypeptide hormone Islet Amyloid Polypeptide (IAPP, amylin) is responsible for islet amyloid formation in type-2 diabetes and in islet cell transplants, where it may contribute to graft failure. Human IAPP is extremely amyloidogenic and fewer inhibitors of IAPP amyloid formation have been reported than for the Alzheimer's Aβ peptide or for α-synuclein. The ability of a set of hydroxyflavones to inhibit IAPP amyloid formation was tested. Fluorescence detected thioflavin-T-binding assays are the most popular methods for measuring the kinetics of amyloid formation and for screening potential inhibitors; however, we show that they can lead to false positives with hydroxyflavones. Several of the compounds inhibit thioflavin-T fluorescence, but not amyloid formation; a result which highlights the hazards of relying solely on thioflavin-T assays to screen potential inhibitors. Transmission electron microscopy (TEM) and right-angle light scattering show that Morin hydrate (2',3,4',5,7-Pentahydroxyflavone) inhibits amyloid formation by human IAPP and disaggregates preformed IAPP amyloid fibers. In contrast, Myricetin, Kaempferol, and Quercetin, which differ only in hydroxyl groups on the B-ring, are not effective inhibitors. Morin hydrate represents a new type of IAPP amyloid inhibitor and the results with the other compounds highlight the importance of the substitution pattern on the B-ring.  相似文献   

6.
The preponderance of evidence implicates protein misfolding in many unrelated human diseases. In all cases, normal correctly folded proteins transform from their proper native structure into an abnormal beta-rich structure known as amyloid fibril. Here we introduce a computational algorithm to detect nonnative (hidden) sequence propensity for amyloid fibril formation. Analyzing sequence-structure relationships in terms of tertiary contact (TC), we find that the hidden beta-strand propensity of a query local sequence can be quantitatively estimated from the secondary structure preferences of template sequences of known secondary structure found in regions of high TC. The present method correctly pinpoints the minimal peptide fragment shown experimentally as the likely local mediator of amyloid fibril formation in beta-amyloid peptide, islet amyloid polypeptide (hIAPP), alpha-synuclein, and human acetylcholinesterase (AChE). It also found previously unrecognized beta-strand propensities in the prototypical helical protein myoglobin that has been reported as amyloidogenic. Analysis of 2358 nonhomologous protein domains provides compelling evidence that most proteins contain sequences with significant hidden beta-strand propensity. The present method may find utility in many medically relevant applications, such as the engineering of protein sequences and the discovery of therapeutic agents that specifically target these sequences for the prevention and treatment of amyloid diseases.  相似文献   

7.
Kapurniotu A 《Biopolymers》2001,60(6):438-459
Insoluble amyloid formation by islet amyloid polypeptide (IAPP) in the islets of Langerhans of the pancreas is a major pathophysiological feature of noninsulin dependent diabetes mellitus (NIDDM) or type II diabetes. Because in vivo formed amyloid colocalizes with areas of cell degeneration and IAPP amyloid aggregates are cytotoxic per se, the process of IAPP amyloid formation has been strongly associated with the progressive pancreatic cell degeneration and thus much of the pathology of type II diabetes. IAPP is a pancreatic polypeptide of 37 residues that, in its soluble form, is believed to play a role as a regulator of glucose homeostasis. The molecular cause and mechanism of the conversion of soluble IAPP into insoluble amyloid aggregates in vivo and its role in disease progress still remain to be clarified. Nevertheless, in the past few years significant progress has been made in understanding the amyloidogenesis pathway of IAPP in vitro and gaining insight into the structural and conformational "requirements" of IAPP amyloidogenesis and related cytotoxic effects. Importantly, several of the studies have revealed significant similarities of the above features of IAPP to other amyloidogenic polypeptides such as the beta-amyloid polypeptide Abeta. This suggests that, at the molecular level, amyloidogenesis, and possibly related cell degeneration and disease pathogenesis by completely different polypeptide sequences, may obey to common structural and conformational "rules" and follow similar molecular pathways. This review describes studies on the structural and conformational features of IAPP amyloid formation and cytotoxicity, and the application of the obtained knowledge for the understanding of the molecular mechanism of the IAPP amyloidogenesis pathway and the related cytotoxicity.  相似文献   

8.
Human islet amyloid polypeptide (hIAPP) accumulates as pancreatic amyloid in type 2 diabetes and readily forms fibrils in vitro. Investigations into the mechanism of hIAPP fibril formation have focused largely on residues 20 to 29, which are considered to comprise a primary amyloidogenic domain. In rodents, proline substitutions within this region and the subsequent beta-sheet disruption, prevents fibril formation. An additional amyloidogenic fragment within the C-terminal sequence, residues 30 to 37, has been identified recently. We have extended these observations by examining a series of overlapping peptide fragments from the human and rodent sequences. Using protein spectroscopy (CD/FTIR), electron microscopy and X-ray diffraction, a previously unrecognised amyloidogenic domain was localised within residues 8 to 20. Synthetic peptides corresponding to this region exhibited a transition from random coil to beta-sheet conformation and assembled into fibrils having a typical amyloid-like morphology. The comparable rat 8-20 sequence, which contains a single His18Arg substitution, was also capable of assembling into amyloid-like fibrils. Examination of peptide fragments corresponding to residues 1 to 13 revealed that the immediate N-terminal region is likely to have only a modulating influence on fibril formation or conformational conversion. The contributions of charged residues as they relate to the amyloid-forming 8-20 sequence were also investigated using IAPP fragments and by assessing the effects of pH and counterions. The identification of these principal amyloidogenic sequences and the effects of associated factors provide details on the IAPP aggregation pathway and structure of the peptide in its fibrillar state.  相似文献   

9.
Zhang X  Cheng B  Gong H  Li C  Chen H  Zheng L  Huang K 《FEBS letters》2011,585(1):1634-77
Of 10 variation sites between sequences of amyloid-resistant porcine islet amyloid polypeptide (pIAPP) and amyloid-prone human IAPP (hIAPP), seven locate within residues 17–29, the most amyloidogenic fragment within hIAPP. To investigate how these variations affect amyloidogenicity, 26 IAPP(17–29) or IAPP(20–29) variants were synthesized and their secondary structures, amyloidogenicity, oligomerization and cytotoxicity were studied. Our results indicated that pIAPP fragments are refractory to amyloid formation and significantly less cytotoxic compared with hIAPP fragments. A novel stable dimer was observed in pIAPP(20–29) solution, whereas hIAPP(20–29) exists mostly as monomers and trimers. Among all human to porcine substitutions, S20R caused the most prolonged lag time and significantly attenuated cytotoxicity. The different oligomerization and amyloidogenic properties of hIAPP and pIAPP fragments are discussed.

Structured summary

pIAPP and pIAPPbind: shown by molecular sieving (view interactions 1, 2)hIAPP and hIAPPbind: shown by molecular sieving (view interactions 1, 2)  相似文献   

10.
Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in the pancreas of over 90% of all cases of type-2 diabetes. Although it may be a secondary event in the etiology of diabetes, the accumulation of insoluble IAPP fibrils is considered to be a primary cause of β-cell failure in affected individuals. A possible means of inhibiting this process is through the use of small peptides that bind to IAPP and prevent fibril polymerization. This approach has been examined using a series of overlapping hexamers that target the known amyloidogenic regions of IAPP. Peptides were examined usingin vitroassays and active inhibitors were identified by their ability to prevent amyloid-related conformational transitions and IAPP aggregation. Fragments such as those corresponding to the IAPP-derived sequences, SNNFGA (residues 20–25) and GAILSS (residues 24–29), were potent inhibitors ofβ-sheet folding and amyloid fibril formation. Negative stain electron microscopy revealed that co-incubation of these peptides with IAPP significantly decreased the density of fibrils and any remaining structures displayed altered morphology. In some, but not all cases, inhibition of amyloid fibrils also correlated with an ability to reduce IAPP-mediated cytotoxicity as determined in cell culture studies. The results from these studies suggest that these two peptide inhibitors differ in their mechanisms of action possibly due to unique interactions with the full-length IAPP molecule. These inhibitors form the basis of a therapeutic strategy to prevent amyloid accumulation leading to improved islet survival and a potentially novel treatment for type-2 diabetes.  相似文献   

11.
Islet amyloid polypeptide (IAPP, amylin) is secreted from pancreatic islet beta-cells and converted to amyloid deposits in type 2 diabetes. Conversion from soluble monomer, IAPP 1-37, to beta-sheet fibrils involves changes in the molecular conformation, cellular biochemistry and diabetes-related factors. In addition to the recognised amyloidogenic region, human IAPP (hIAPP) 20-29, the peptides human or rat IAPP 30-37 and 8-20, assume beta-conformation and form fibrils. These three amyloidogenic regions of hIAPP can be modelled as a folding intermediate with an intramolecular beta-sheet. A hypothesis is proposed for co-secretion of proIAPP with proinsulin in diabetes and formation of a 'nidus' adjacent to islet capillaries for subsequent accumulation of secreted IAPP to form the deposit. Although intracellular fibrils have been identified in experimental systems, extracellular deposition predominates in animal models and man. Extensive fibril accumulations replace islet cells. The molecular species of IAPP that is cytotoxic remains controversial. However, since fibrils form invaginations in cell membranes, small non-toxic IAPP fibrillar or amorphous accumulations could affect beta-cell stimulus-secretion coupling. The level of production of hIAPP is important but not a primary factor in islet amyloidosis; there is little evidence for inappropriate IAPP hypersecretion in type 2 diabetes and amyloid formation is generated in transgenic mice overexpressing the gene for human IAPP only against a background of obesity. Animal models of islet amyloidosis suggest that diabetes is induced by the deposits whereas in man, fibril formation appears to result from diabetes-associated islet dysfunction. Islet secretory failure results from progressive amyloidosis which provides a target for new therapeutic interventions.  相似文献   

12.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   

13.
Islet amyloid polypeptide (IAPP; amylin) is responsible for amyloid formation in type-2 diabetes. Not all organisms form islet amyloid, and amyloid formation correlates strongly with variations in primary sequence. Studies of human and rodent IAPP have pointed to the amino acid residues 20-29 region as the important amyloid-modulating sequence. The rat 20-29 sequence contains three proline residues and does not form amyloid, while the human sequence contains no proline and readily forms amyloid. This has led to the view that the 20-29 region constitutes a critical amyloidogenic domain that dictates the properties of the entire sequence. The different behavior of human and rat IAPP could be due to differences in the 20-29 region or due simply to the fact that multiple proline residues destabilize amyloid fibrils. We tested how critical the 20-29 region is by studying a variant identical with the human peptide in this segment but with three proline residues outside this region. We designed a variant of the amyloidogenic 8-37 region of human IAPP (hIAPP(8-37) 3xP) with proline substitutions at positions 17, 19 and 30. Compared to the wild-type, the 3xP variant was much easier to synthesize and had dramatically greater solubility. Fourier transform infra red spectroscopy, transmission electron microscopy, Congo red staining and thioflavin-T binding indicate that this variant has a reduced tendency to form beta-sheet structure and forms deposits with much less structural order than the wild-type. Far-UV CD studies show that the small amount of beta-sheet structure developed by hIAPP(8-37) 3xP after long periods of incubation dissociates readily into random-coil structure upon dilution into Tris buffer. The observation that proline substitutions outside the putative core domain effectively abolish amyloid formation indicates that models of IAPP aggregation must consider contributions from other regions.  相似文献   

14.
Type 2 Diabetes is a major public health threat, and its prevalence is increasing worldwide. The abnormal accumulation of islet amyloid polypeptide (IAPP) in pancreatic β-cells is associated with the onset of the disease. Therefore, the design of small molecules able to inhibit IAPP aggregation represents a promising strategy in the development of new therapies. Here we employ in vitro, biophysical, and computational methods to inspect the ability of Silybin A and Silybin B, two natural diastereoisomers extracted from milk thistle, to interfere with the toxic self-assembly of human IAPP (hIAPP). We show that Silybin B inhibits amyloid aggregation and protects INS-1 cells from hIAPP toxicity more than Silybin A. Molecular dynamics simulations revealed that the higher efficiency of Silybin B is ascribable to its interactions with precise hIAPP regions that are notoriously involved in hIAPP self-assembly i.e., the S20-S29 amyloidogenic core, H18, the N-terminal domain, and N35. These results highlight the importance of stereospecific ligand-peptide interactions in regulating amyloid aggregation and provide a blueprint for future studies aimed at designing Silybin derivatives with enhanced drug-like properties.  相似文献   

15.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

16.
We have examined a series of overlapping peptide fragments from the 8-20 region of human islet amyloid polypeptide (IAPP) with the objective of defining the smallest fibril-forming domain. Peptide fragments corresponding to LANFLV (residues 12-17) and FLVHSS (residues 15-20) were strong enhancers of beta-sheet transition and fibril formation. Negative stain electron microscopy illustrated the ability of these peptide fragments to form fibrils independently when incubated alone in solution. Circular dichroism analysis revealed that when full-length human IAPP was incubated in the presence of these two fragments, fibrillogenesis was accelerated. While the two fragments, LANFLV and FLVHSS, were able to enhance the recruitment of additional IAPP molecules during fibril formation, the "seeding" activity of these peptides had no effect on altering IAPP-induced cytotoxcity as determined by cell culture studies. Therefore, this study has identified two internal IAPP peptide fragments within the 8-20 domain that may have a role in enhancing the folding and aggregation of human IAPP. These fragments are the smallest sequences identified, within the 8-20 region of hIAPP, that can independently form fibrils, and that can interact with IAPP to assemble into fibrils with characteristics similar as those formed by human IAPP alone.  相似文献   

17.
BACKGROUND: Several mouse strains expressing human islet amyloid polypeptide (IAPP) have been created to study development of islet amyloid and its impact on islet cell function. The tendency to form islet amyloid has varied strongly among these strains by factors that have not been elucidated. Because some beta cell granule components are known to inhibit IAPP fibril formation in vitro, we wanted to determine whether a mouse strain expressing human IAPP but lacking the nonamyloidogenic mouse IAPP is more prone to develop islet amyloidosis. MATERIALS AND METHODS: Such a strain was created by cross-breeding a transgenic mouse strain and an IAPP null mouse strain. RESULTS: When fed a fat-enriched diet, male mice expressing only human IAPP developed islet amyloid earlier and to a higher extent than did mice expressing both human and mouse IAPP. Supporting these results, we found that mouse IAPP dose-dependently inhibits formation of fibrils from human IAPP. CONCLUSIONS: Female mice did not develop amyloid deposits, although small extracellular amorphous IAPP deposits were found in some islets. When cultivated in vitro, amyloid deposits occurred within 10 days in islets from either male or female mice expressing only human IAPP. The study shows that formation of islet amyloid may be dependent on the environment, including the presence or absence of fibril inhibitors or promoters.  相似文献   

18.
Yoon S  Welsh WJ 《Proteins》2005,60(1):110-117
We have previously demonstrated that calculation of contact-dependent secondary structure propensity (CSSP) is highly sensitive in detecting non-native beta-strand propensities in the core sequences of known amyloidogenic proteins. Here we describe a CSSP method based on an artificial neural network that rapidly and accurately quantifies the influence of tertiary contacts (TCs) on secondary structure propensity in local regions of protein sequences. The present method exhibited 72% accuracy in predicting the alternate secondary structure adopted by chameleon sequences located in highly disparate TC regions. Analysis of 1930 nonhomologous protein domains reveals that the alpha-helix and the beta-strand largely share the same sequence context, and that tertiary context is a major determinant of the native conformation. Conversely, it appears that the propensity of random coils for either the alpha-helix or the beta-strand is largely invariant to tertiary effects. The present CSSP method successfully reproduced the amyloidogenic character observed in local regions of the human islet amyloid polypeptide (hIAPP). Furthermore, CSSP profiles were strongly correlated (r = 0.76) with the observed mutational effects on the aggregation rate of acylphosphatase. Taken together, these results provide compelling evidence in support of the present CSSP approach as a sensitive probe useful for analysis of full-length proteins and for detection of core sequences that may trigger amyloid fibril formation. The combined speed and simplicity of the CSSP method lends itself to proteome-wide analysis of the amyloidogenic nature of common proteins.  相似文献   

19.
Islet amyloid polypeptide (IAPP) is a recently discovered pancreatic islet hormone which is stored with insulin in beta cell granules. IAPP may have a significant role in the development of Type 2 diabetes mellitus due to its propensity to form islet cell-disrupting amyloid deposits, and by opposing the action of insulin in peripheral tissues. Most evidence to-date suggests that an intrinsic structural motif of IAPP is linked to the amyloidogenicity of IAPP, and that this motif occurs only in those species (e.g., humans and cats) that also develop age-associated or Type 2 diabetes We utilized polymerase chain reaction methodology in this study to obtain the IAPP nucleotide and protein sequences of the dog, a species not known to develop islet amyloid. We show that dog IAPP contains the same putative amyloidogenic sequence (GAILS) at residues 24-28 as human and cat IAPP, and that although dogs do not develop islet amyloid they do develop IAPP-derived amyloid in association with neoplastic beta cells (i.e., insulinomas). These results provide strong evidence that the amyloidogenicity of IAPP is linked to at least two prerequisites: a species-specific amyloidogenic structural motif, and aberrations in the synthesis (or processing) of IAPP which leads to increased concentration of IAPP in the local milieau.  相似文献   

20.
The specific functional structure of natural proteins is determined by the way in which amino acids are sequentially connected in the polypeptide. The tight sequence/structure relationship governing protein folding does not seem to apply to amyloid fibril formation because many proteins without any sequence relationship have been shown to assemble into very similar β-sheet-enriched structures. Here, we have characterized the aggregation kinetics, seeding ability, morphology, conformation, stability, and toxicity of amyloid fibrils formed by a 20-residue domain of the islet amyloid polypeptide (IAPP), as well as of a backward and scrambled version of this peptide. The three IAPP peptides readily aggregate into ordered, β-sheet-enriched, amyloid-like fibrils. However, the mechanism of formation and the structural and functional properties of aggregates formed from these three peptides are different in such a way that they do not cross-seed each other despite sharing a common amino acid composition. The results confirm that, as for globular proteins, highly specific polypeptide sequential traits govern the assembly pathway, final fine structure, and cytotoxic properties of amyloid conformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号