首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to test the preference of growing axons for membrane-associated positional specificity a new in vitro assay was developed. In this assay, membrane fragments of two different sources are arranged as a carpet of very narrow alternating strips. Axons growing on such striped carpets are simultaneously confronted with the two substrates at the stripe borders. If there is a preference of axons for one or the other substrate they become oriented by the stripes and grow within the lanes of the preferred substrate. Such preferential growth could, in principle, be due to affinity to attractive factors on the preferred stripes or avoidance of repulsive factors on the alternate stripes. This assay system was used to investigate growth of chick retinal axons on tectal membranes. Tissue strips cut from various areas of the retina were explanted and the extending axons were confronted with stripes of cell membranes from various areas within the optic tectum. Tectal cell membranes prove to be an excellent substrate for the growth of retinal axons. Nasal and temporal axons can grow well on membranes of both posterior and anterior tectal cells. If, however, temporal axons are given a choice and encounter the border between anterior and posterior membranes they show a marked preference for growth on membranes of the anterior tectum, their natural target area. Nasal axons do not show a preference in this assay system. The transition from nasal to temporal properties within the retina is abrupt. In contrast, the transition from anterior to posterior properties of the tectal cell membranes occurs as a smooth gradient. Significantly, the positional differences of tectal membrane properties are only seen during the period of development of the retinotectal projection and are independent of tectal innervation by retinal axons. These anterior-posterior differences disappear by embryonic day 14.  相似文献   

2.
In a cross species in vitro assay, growth cones from fish temporal retina elongating on laminin lanes were observed with time-lapse videomicroscopy as they encountered lanes and territories that carried membrane fragments from the chick caudal tectum. Caudal tectal membranes of adult fish and embryonic chick are known to possess a repellent guiding component for temporal retinal axons. The caudal membranes of chick exert a particularly strong influence on fish temporal axons. Contacts with chick caudal membranes by just a few filopodia and parts of the lamellipodia evoked a turning response away from the membrane lane of the entire growth cone. Contacts by filo- and lamellipodia over the entire circumference of the growth cone, however, caused invariably growth cone collapse and retraction. During growth cone turning and collapse and retraction, filopodia remained in contact with the tectal membrane fragments, suggesting strong membrane–filopodia adhesion simultaneous to growth cone repulsion by the repellent guiding component. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Although molecular gradients have long been postulated to play a role in the development of topographic projections in the nervous system, relatively little is known about how axons evaluate gradients. Do growth cones respond to concentration or to slope? Do they react suddenly or gradually? Is there adaptation? In the developing retinotectal system, temporal retinal ganglion cell axons have previously been shown to avoid repellent cell-surface activities distributed in gradients across the optic tectum. We confronted temporal retinal axons with precisely formed striped linear gradients of repellent tectal membranes and of two candidate repellent molecules, ephrin-A2 and -A5. Axons entered gradient stripes independently of their slope and extended unhindered in the uphill direction until they suddenly avoided an apparent threshold concentration of repellent material that was independent of slope. This critical concentration was similar in both linear and nonlinear gradients, and hence independent of gradient shape. When gradients of identical slope were formed on different basal levels of repellent material, axons grew uphill for a fixed increment of concentration, possibly measured from the lowest point of the gradient, rather than up to a fixed absolute concentration. The speed of growth cones was not affected by repellent unstriped gradients below the critical concentration level. Similar results were found with membranes from cell lines stably transfected with either ephrin-A5 or ephrin-A2, two previously identified growth cone repellent cell-surface proteins. These data suggest that growth cones or axons can integrate guidance information over large distances, probably by a combined memory and adaptation mechanism. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 541–562, 1998  相似文献   

4.
Membranes from posterior and anterior thirds of the chick optic tectum were added to explants from nasal and temporal retina. Posterior membranes, and to a lesser extent anterior membranes, cause temporal growth cones to collapse and their axonal processes to retract. Neither tectal source has an effect on nasal growth cones. We interpret these results to mean that there is a tectal activity, stronger in the posterior than the anterior region of the tectum, which helps guide growth cones during the development of the retinotectal map. We believe that in vivo this activity helps to steer temporal growth cones away from the posterior tectum. Nasal growth cones, which must map to the posterior tectum, are resistant to it. In vitro, when posterior membranes contact temporal growth cones over their surface, filopodia and lamellipodia withdraw rapidly. This leads to loss of contact between the growth cone and the substrate, followed by collapse.  相似文献   

5.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

6.
During axonal growth, repulsive guidance cues cause growth cone collapse and retraction. In the chick embryo, membranes from the posterior part of the optic tectum containing ephrins are original collapsing factors for axons growing from the temporal retina. We investigated signal transduction pathways in retinal axons underlying this membrane-evoked collapse. Perturbation experiments using pertussis toxin (PTX) showed that membrane-induced collapse is mediated via G(o/i) proteins, as is the case for semaphorin/collapsin-1-induced collapse. Studies with Indo-1 revealed that growth cone collapse by direct activation of G(o/i) proteins with mastoparan did not cause elevation of the intracellular Ca(2+) level, and thus this signal transduction pathway is Ca(2+) independent. Application of the protein phosphatase inhibitor okadaic acid alone induced growth cone collapse in retinal culture, suggesting signals involving protein dephosphorylation. In addition, pretreatment of retinal axons with olomoucine, a specific inhibitor of cdk5 (tau kinase II), prevented mastoparan-evoked collapse. Olomoucine also blocks caudal tectal membrane-mediated collapse. These results suggest that rearrangement of the cytoskeleton is mediated by tau phosphorylation. Immunostaining visualized complementary distributions of tau phospho- and dephosphoisoforms within the growth cone, which also supports the involvement of tau. Taking these findings together, we conclude that cdk5 and tau phosphorylation probably lie downstream of growth cone collapse signaling mediated by PTX-sensitive G proteins.  相似文献   

7.
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, play important roles during development of the nervous system. Frequently they exert their functions through a repellent mechanism, so that, for example, an axon expressing an Eph receptor does not invade a territory in which an ephrin is expressed. Eph receptor activation requires membrane-associated ligands. This feature discriminates ephrins from other molecules sculpturing the nervous system such as netrins, slits and class 3 semaphorins, which are secreted molecules. While the ability of secreted molecules to guide axons, i.e. to change their growth direction, is well established in vitro, little is known about this for the membrane-bound ephrins. Here we set out to investigate--using Xenopus laevis retinal axons--the properties of substratum-bound and (artificially) soluble forms of ephrin-A5 (ephrin-A5-Fc) to guide axons. We find--as expected on the basis of chick experiments - that, when immobilised in the stripe assay, ephrin-A5 has a repellent effect such that retinal axons avoid ephrin-A5-Fc-containing lanes. Also, retinal axons react with repulsive turning or growth cone collapse when confronted with ephrin-A5-Fc bound to beads. However, when added in soluble form to the medium, ephrin-A5 induces growth cone collapse, comparable to data from chick. The analysis of growth cone behaviour in a gradient of soluble ephrin-A5 in the 'turning assay' revealed a substratum-dependent reaction of Xenopus retinal axons. On fibronectin, we observed a repulsive response, with the turning of growth cones away from higher concentrations of ephrin-A5. On laminin, retinal axons turned towards higher concentrations, indicating an attractive effect. In both cases the turning response occurred at a high background level of growth cone collapse. In sum, our data indicate that ephrin-As are able to guide axons in immobilised bound form as well as in the form of soluble molecules. To what degree this type of guidance is relevant for the in vivo situation remains to be shown.  相似文献   

8.
Axonal growth cones originating from explants of embryonic chick retina were simultaneously exposed to two different cell monolayers and their preference for particular monolayers as a substrate for growth was determined. These experiments show that: (1) nasal retinal axons can distinguish between retinal and tectal cells; (2) temporal retinal axons can distinguish between tectal cells that originated from different positions within the tectum along the antero-posterior axis; (3) axons originating from nasal parts of the retina have different recognizing capabilities from temporal axons; (4) the property of the tectal cells, which is attractive for temporal axons, has a graded distribution along the antero-posterior axis of the tectum; and (5) this gradient also exists in non-innervated tecta.  相似文献   

9.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5-poor anterior tectum and avoid the ephrinA5-rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA-coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time-delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum.  相似文献   

10.
During axonal growth, repulsive guidance cues cause growth cone collapse and retraction. In the chick embryo, membranes from the posterior part of the optic tectum containing ephrins are original collapsing factors for axons growing from the temporal retina. We investigated signal transduction pathways in retinal axons underlying this membrane‐evoked collapse. Perturbation experiments using pertussis toxin (PTX) showed that membrane‐induced collapse is mediated via Go/i proteins, as is the case for semaphorin/collapsin‐1–induced collapse. Studies with Indo‐1 revealed that growth cone collapse by direct activation of Go/i proteins with mastoparan did not cause elevation of the intracellular Ca2+ level, and thus this signal transduction pathway is Ca2+ independent. Application of the protein phosphatase inhibitor okadaic acid alone induced growth cone collapse in retinal culture, suggesting signals involving protein dephosphorylation. In addition, pretreatment of retinal axons with olomoucine, a specific inhibitor of cdk5 (tau kinase II), prevented mastoparan‐evoked collapse. Olomoucine also blocks caudal tectal membrane‐mediated collapse. These results suggest that rearrangement of the cytoskeleton is mediated by tau phosphorylation. Immunostaining visualized complementary distributions of tau phospho‐ and dephosphoisoforms within the growth cone, which also supports the involvement of tau. Taking these findings together, we conclude that cdk5 and tau phosphorylation probably lie downstream of growth cone collapse signaling mediated by PTX‐sensitive G proteins. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 326–339, 1999  相似文献   

11.
During development of the retinocollicular projection in mouse, retinal axons initially overshoot their future termination zones (TZs) in the superior colliculus (SC). The formation of TZs is initiated by interstitial branching at topographically appropriate positions. Ephrin-As are expressed in a decreasing posterior-to-anterior gradient in the SC, and they suppress branching posterior to future TZs. Here we investigate the role of an EphA7 gradient in the SC, which has the reverse orientation to the ephrin-A gradient. We find that in EphA7 mutant mice the retinocollicular map is disrupted, with nasal and temporal axons forming additional or extended TZs, respectively. In vitro, retinal axons are repelled from growing on EphA7-containing stripes. Our data support the idea that EphA7 is involved in suppressing branching anterior to future TZs. These findings suggest that opposing ephrin-A and EphA gradients are required for the proper development of the retinocollicular projection.  相似文献   

12.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5‐poor anterior tectum and avoid the ephrinA5‐rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA‐coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time‐delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

13.
Retinal ganglion cell axons grow towards the optic fissure in close contact with the basal membrane, an excellent growth substratum. One of the ligands of receptor tyrosine phosphatase CRYPalpha is located on the retinal and tectal basal membranes. To analyze the role of this RPTP and its ligand in intraretinal growth and guidance of ganglion cell axons, we disrupted ligand- receptor interactions on the retinal basal membrane in culture. Antibodies against CRYPalpha strongly reduced retinal axon growth on the basal membrane, and induced a dramatic change in morphology of retinal growth cones, reducing the size of growth cone lamellipodia. A similar effect was observed by blocking the ligand with a CRYPalpha ectodomain fusion protein. These effects did not occur, or were much reduced, when axons were grown either on laminin-1, on matrigel or on basal membranes with glial endfeet removed. This indicates that a ligand for CRYPalpha is located on glial endfeet. These results show for the first time in vertebrates that the interaction of a receptor tyrosine phosphatase with its ligand is crucial not only for promotion of retinal axon growth but also for maintenance of retinal growth cone lamellipodia on basal membranes.  相似文献   

14.
Temporal retinal axons growing in vitro on carpets of tectal membranes are deflected by cell membranes of posterior tectum. The activity responsible for this deflection can be abolished by antibodies raised against tectal membranes and the corresponding Fab fragments. Analysis of tectal membranes by two-dimensional gel electrophoresis and immunoblotting reveals a 33 kd glycoprotein that has a higher concentration in posterior than in anterior tectum. Its expression is developmentally regulated, and it is sensitive to phosphatidylinositol-specific phospholipase C. These are properties expected for a molecule responsible for the phenomena observed in experiments on in vitro guidance of retinal axons.  相似文献   

15.
We investigated the role of the cell adhesion molecule NrCAM for axonal growth and pathfinding in the developing retina. Analysis of the distribution pattern of NrCAM in chick embryo retina sections and flat-mounts shows its presence during extension of retinal ganglion cell (RGC) axons; NrCAM is selectively present on RGC axons and is absent from the soma. Single cell cultures show an enrichment of NrCAM in the distal axon and growth cone. When offered as a substrate in addition to Laminin, NrCAM promotes RGC axon extension and the formation of growth cone protrusions. In substrate stripe assays, mimicking the NrCAM-displaying optic fibre layer and the Laminin-rich basal lamina, RGC axons preferentially grow on NrCAM lanes. The three-dimensional analysis of RGC growth cones in retina flat-mounts reveals that they are enlarged and form more protrusions extending away from the correct pathway under conditions of NrCAM-inhibition. Time-lapse analyses show that these growth cones pause longer to explore their environment, proceed for shorter time spans, and retract more often than under control conditions; in addition, they often deviate from the correct pathway towards the optic fissure. Inhibition of NrCAM in organ-cultured intact eyes causes RGC axons to misroute at the optic fissure; instead of diving into the optic nerve head, these axons cross onto the opposite side of the retina. Our results demonstrate a crucial role for NrCAM in the navigation of RGC axons in the developing retina towards the optic fissure, and also for pathfinding into the optic nerve.  相似文献   

16.
S Kr?ger  J Walter 《Neuron》1991,6(2):291-303
During embryonic development of the avian optic tectum, retinal and tectobulbar axons form an orthogonal array of nerve processes. Growing axons of both tracts are transiently very closely apposed to each other. Despite this spatial proximity, axons from the two pathways do not intermix, but instead restrict their growth to defined areas, thus forming two separate plexiform layers, the stratum opticum and the stratum album centrale. In this study we present experimental evidence indicating that the following three mechanisms might play a role in segregating both axonal populations: Retinal and tectobulbar axons differ in their ability to use the extracellular matrix protein laminin as a substrate for axonal elongation; the environment in the optic tectum is generally permissive for retinal axons, but is specifically nonpermissive for tectobulbar axons, resulting in a strong fasciculation of the latter; and growth cones of temporal retinal axons are reversibly inhibited in their motility by direct contact with the tectobulbar axon's membrane.  相似文献   

17.
We examined whether regenerating axons from adult rat ganglion cells are able to recognize their appropriate target region in vitro. Explants from adult rat retina were cocultured with embryonic sagittal midbrain slices in Matrigel®. The midbrain sections contained the superior colliculus, the main target for retinal ganglion cell axons in rats, and the inferior colliculus. We observed a statistically significant preference of both temporal and nasal retinal axons to grow toward their appropriate target region (anterior and posterior superior colliculus, respectively). No preferential growth of retinal ganglion cell axons was detected in controls, for which retinal explants were cultured on their own. When retinal ganglion cell axons were given a choice between superior colliculus and inferior colliculus, axons from nasal retina preferentially grew toward the posterior superior colliculus and avoided the inferior colliculus. In contrast, temporal axons in the same assay did not show preference for either of the colliculi. These findings suggest that regenerating axons from adult rat retina are able to recognize target-specific guidance cues released from embryonic midbrain targets in vitro. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 379–387, 1998  相似文献   

18.
Axon pathfinding relies on cellular signaling mediated by growth cone receptor proteins responding to ligands, or guidance cues, in the environment. Eph proteins are a family of receptor tyrosine kinases that govern axon pathway development, including retinal axon projections to CNS targets. Recent examination of EphB mutant mice, however, has shown that axon pathfinding within the retina to the optic disc is dependent on EphB receptors, but independent of their kinase activity. Here we show a function for EphB1, B2 and B3 receptor extracellular domains (ECDs) in inhibiting mouse retinal axons when presented either as substratum-bound proteins or as soluble proteins directly applied to growth cones via micropipettes. In substratum choice assays, retinal axons tended to avoid EphB-ECDs, while time-lapse microscopy showed that exposure to soluble EphB-ECD led to growth cone collapse or other inhibitory responses. These results demonstrate that, in addition to the conventional role of Eph proteins signaling as receptors, EphB receptor ECDs can also function in the opposite role as guidance cues to alter axon behavior. Furthermore, the data support a model in which dorsal retinal ganglion cell axons heading to the optic disc encounter a gradient of inhibitory EphB proteins which helps maintain tight axon fasciculation and prevents aberrant axon growth into ventral retina. In conclusion, development of neuronal connectivity may involve the combined activity of Eph proteins serving as guidance receptors and as axon guidance cues.  相似文献   

19.
The retinae of vertebrates project in a topographic manner to several visual centers of the brain. The formation of these projections could depend on the existence of position-specific properties of retinal and target cells. In this study, we have tested the in vitro growth of mouse retinal fibers on membranes derived from various regions of the embryonic superior colliculus, a main target of the retina in this species. Fibers had the choice of elongating on membranes taken from either the anterior or the posterior half of the superior colliculus. Fibers from temporal areas of the retina prefer to elongate on anterior collicular membranes, while fibers from nasal areas do not show a preference. These phenomena are observed with membranes from embryonic (E15-E18) or young postnatal mice. In interspecies cultures where mouse retinal fibers had to grow on chick tectal membranes, or vice versa, the same preference for anterior tectal or collicular membranes in growth of temporal retinal fibers is observed, suggesting some similarities in the cues used in both species.  相似文献   

20.
In this study the role of membrane-associated molecules involved in entorhinohippocampal pathfinding was examined. First outgrowth preferences of entorhinal neurites were analyzed on membrane carpets obtained from their proper target area, the hippocampus, and compared to preferences on control membranes from brain regions which do not receive afferent connections from the entorhinal cortex. On a substrate consisting of alternating lanes of hippocampal and control membranes, entorhinal neurites exhibited a strong tendency to grow on lanes of hippocampal membrane. These tissue-specific outgrowth preferences were maintained even on membrane preparations from adult brain tissue devoid of myelin. To determine the possible maturation dependence of these membranes, we examined guidance preferences of entorhinal neurites on hippocampal membranes of different developmental stages ranging from embryonic to postnatal and adult. Given a choice between alternating lanes of embryonic (E15-E16) and neonatal (P0-P1) hippocampal membranes, entorhinal neurites preferred to extend on neonatal membranes. No outgrowth preferences were observed on membranes obtained between E19 and P10. From P10 onward there was a reoccurrence of a preference for postnatal membrane lanes when neurites were presented with a choice between P15, P30, and adult membranes (>P60). This choice behavior of entorhinal neurites temporally correlates with the ingrowth of the perforant path into the hippocampus and with the stabilization of this brain area in vivo. Experiments in which postnatal and adult hippocampal membranes were heat inactivated or treated to remove molecules sensitive to phosphatidylinositol-specific phospholipase C demonstrated that entorhinal fiber preferences were controlled in this assay by attractive guidance cues and were independent of phosphatidylinositol-sensitive linked molecules. Moreover, entorhinal neurites displayed a positive discrimination for membrane-associated guidance cues of their target field, thus preferring to grow on membranes from the molecular layer of the dentate gyrus compared with CA3 or hilus membranes. Heat-inactivation experiments indicated that preferential growth of entorhinal axons is due to a specific attractivity of the molecular layer substrate. The data presented demonstrate that outgrowth of entorhinal fibers on hippocampal membranes is target and maturation dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号