首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Synucleins are small, highly conserved proteins in vertebrates, especially abundant in neurons and typically enriched in presynaptic terminals. alpha-Synuclein protein and a fragment of it, called NAC, have been found in association with pathological lesions of neurodegenerative diseases. Recently, mutations in a alpha-synuclein gene have been reported in families susceptible to an inherited form of Parkinson's diseases. In addition, alpha-synuclein has been implicated in the pathophysiology of other neurodegenerative diseases, including Alzheimer's disease and multiple system atrophy. Far less is known about other members of the synuclein family, beta- and gamma-synucleins. gamma-synuclein is up-regulated in several types of cancer and may affect the integrity of the neurofilament network, while its bovine ortholog, synoretin, activates the Elk-1 signal transduction pathway. In this paper, we present data about the localization and properties of human and bovine gamma-synuclein in several neuronal and non-neuronal cell cultures derived from ocular tissues. We show that gamma-synuclein is present in the perinuclear area and is localized to centrosomes in several types of human interphase cells and in bovine retinal pigment epithelium. In mitotic cells, gamma-synuclein staining is localized to the poles of the spindle. Further, overexpression of synoretin in retinoblastoma cells up-regulates MAPK and Elk-1. These results support the view that gamma-synuclein is a centrosome protein that may be involved in signal transduction pathways.  相似文献   

2.
gamma-Synuclein is a small cytoplasmic protein implicated in neurodegenerative diseases and cancer. However, the mechanism of its involvement in diseases is not clear. We studied the role of gamma-synuclein in the regulation of matrix metalloproteinases in retinoblastoma cell culture. Matrix metalloproteinases play important roles in the remodeling of extracellular matrix implicated in tumor progression and in the neurodegenerative diseases. Western blot and zymography data demonstrated a moderate elevation of matrix metalloproteinases-2 and significant upregulation of matrix metalloproteinases-9 in stable cell lines overexpressing gamma-synuclein. No effect of gamma-synuclein overexpression on matrix metalloproteinases-1 level or activity was found. Chloramphenicol-acetyltransferase assay demonstrated that overexpression of gamma-synuclein increases the efficiency of the matrix metalloproteinases-9 promoter. This increment of promoter activity may be mediated by the AP-1 binding site(s), since point mutations in one of these sites (Pr18 or Pr19) and elimination of the distal AP-1 site (Pr14) reduced the increment of promoter activity.  相似文献   

3.
Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein beta-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during integrin-mediated cell adhesion and intracellular signaling.  相似文献   

4.
Synucleins家族是一种主要在神经元内表达的高度可溶性的蛋白家族。已知synucleins家族有3个成员α-synuclein(SNCA),β-synuclein(SNCB)和γ-synuclein(SNCG)。其中SNCA与SNCB参与神经递质释放过程,被认为与神经退行性变疾病密切相关,特别是在阿尔茨海默病与帕金森病中常有异常表达。近年来研究表明,SNCG在人类许多肿瘤中过表达,如乳腺癌、结直肠癌、女性生殖系统肿瘤、前列腺癌、膀胱癌等。通过研究表明γ-Synucleins异常表达机制目前包括DNA甲基化、激动蛋白-1激活、对转录因子SP1结合位点、有丝分裂检验点基因、雌激素受体影响。通过以上机制,SNCG促进上述肿瘤细胞的增殖、抑制肿瘤细胞的凋亡以及促进肿瘤细胞的转移。根据文献分析,我们提出SNCG可作为多种肿瘤预后的潜在指标的可能,同时以SNCG为切入点,探讨神经系统是否可以对肿瘤发生、发展的影响作用。  相似文献   

5.
Epac belongs to a new family of proteins that can directly mediate the action of the intracellular second messenger cAMP by activating a downstream small GTPase Rap1. The Epac/Rap1 pathway represents a novel cAMP-signaling cascade that is independent of the cAMP-dependent protein kinase (PKA). In this study, we have used fluorescence microscopy to probe the intracellular targeting of Epac during different stages of the cell division cycle and the structural features that are important for Epac localization. Our results suggest Epac, endogenous or expressed as a green fluorescent protein fusion protein, is mainly localized to the nuclear membrane and mitochondria during interphase in COS-7 cells. Deletion mutagenesis analysis reveals that whereas the DEP domain is responsible for membrane association, the mitochondrial-targeting sequence is located at the N terminus. Although Epac predominantly exhibits perinuclear localization in interphase, the subcellular localization of Epac is cell cycle-dependent. Epac disassociates from the nuclear membrane and localizes to the mitotic spindle and centrosomes in metaphase. At the end of the cell cycle, Epac is observed to reassociate with the nuclear envelope and concentrate around the contractile ring. Furthermore, overexpression of Epac in COS-7 cells leads to an increase in multinuclear cell populations. These results suggest that Epac may play an important role in mitosis.  相似文献   

6.
Gamma-synuclein is a neuronal protein found in peripheral and motor nerve systems. It becomes highly expressed in metastatic but not in primary tumor or normal tissues. The close association between gamma-synuclein expression and cancer spreading has been demonstrated in a broad range of malignancies. Our previous study showed that exogenous expression of gamma-synuclein in ovarian and breast cancer cells significantly enhanced cell migration and resistance to paclitaxel-induced apoptotic death. In our current research, we found that gamma-synuclein can affect microtubule properties and act as a functional microtubule associated protein. In vitro assays revealed that gamma-synuclein can bind and promote tubulin polymerization, induce the microtubule bundling and alter microtubule morphology developed in the presence of microtubule associated protein 2 (MAP2). Using cancer cell lysate, gamma-synuclein protein was found to be localized in both cytosolic compartment and extracted cytoskeleton portion. Immunofluorescence staining demonstrated that gamma-synuclein can colocalize with microtubule in HeLa cells and decrease rigidity of microtubule bundles caused by paclitaxel. In human ovarian cancer epithelial A2780 cells, gamma-synuclein overexpression improved cell adhesion and microtubule structure upon paclitaxel treatment. Importantly, it led to microtubule-dependent mitochondria clustering at perinuclear area. These observations suggest that overexpression of gamma-synuclein may reduce cell chemo-sensitivity of tumor cells through decreasing microtubule rigidity. In summary, our studies suggested that gamma-synuclein can directly participate in microtubule regulation.  相似文献   

7.
The synucleins are a family of intrinsically disordered proteins involved in various human diseases. alpha-Synuclein has been extensively characterized due to its role in Parkinson's disease where it forms intracellular aggregates, while gamma-synuclein is overexpressed in a majority of late-stage breast cancers. Despite fairly strong sequence similarity between the amyloid-forming regions of alpha- and gamma-synuclein, gamma-synuclein has only a weak propensity to form amyloid fibrils. We hypothesize that the different fibrillation tendencies of alpha- and gamma-synuclein may be related to differences in structural propensities. Here we have measured chemical shifts for gamma-synuclein and compared them to previously published shifts for alpha-synuclein. In order to facilitate direct comparison, we have implemented a simple new technique for re-referencing chemical shifts that we have found to be highly effective for both disordered and folded proteins. In addition, we have developed a new method that combines different chemical shifts into a single residue-specific secondary structure propensity (SSP) score. We observe significant differences between alpha- and gamma-synuclein secondary structure propensities. Most interestingly, gamma-synuclein has an increased alpha-helical propensity in the amyloid-forming region that is critical for alpha-synuclein fibrillation, suggesting that increased structural stability in this region may protect against gamma-synuclein aggregation. This comparison of residue-specific secondary structure propensities between intrinsically disordered homologs highlights the sensitivity of transient structure to sequence changes, which we suggest may have been exploited as an evolutionary mechanism for fast modulation of protein structure and, hence, function.  相似文献   

8.
PKL12 (STK16) is a ubiquitously expressed Ser/Thr kinase, not structurally related to the well known subfamilies, with a putative role in cell adhesion control. Yeast two-hybrid protein interaction screening was used to search for proteins that associate with PKL12 and to delineate signaling pathways and/or regulatory circuits in which this kinase participates. One positive clone contained an open reading frame highly similar to N-acetylglucosamine kinase (GlcNAcK) of several species. The PKL12/GlcNAcK interaction was further confirmed both in vitro and in vivo. Protein expression analysis of GlcNAcK using a specific rabbit antiserum displayed a ubiquitous pattern in cell lines and animal tissues. Subcellular localization studies showed that GlcNAcK is a cytoplasmic protein with a dual subcellular localization, distributed between the perinuclear and peripheral cell reservoirs. After overexpression, GlcNAcK localizes in vesicular structures associated mainly with the cell membrane and colocalizes with the PKL12 protein. GlcNAcK is not otherwise a substrate for PKL12 activity and PKL12 does not appear to influence GlcNAcK activity either in vitro or in vivo. In vitro kinase assays have nonetheless revealed that functional GlcNAcK, although not able to modulate autophosphorylation of PKL12, greatly influences PKL12 kinase activity on a defined substrate protein. These results are interpreted to indicate a potential in vivo role for GlcNAcK in PKL12 translocation and a tentative regulatory role for PKL12-mediated phosphorylation on substrate proteins.  相似文献   

9.
Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down’s syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.  相似文献   

10.
Huntington disease is an autosomal dominant neurodegenerative disorder caused by the pathological expansion of a polyglutamine tract. In this study we directly assess the influence of protein size on the formation and subcellular localization of huntingtin aggregates. We have created numerous deletion constructs expressing successively smaller fragments of huntingtin and show that these smaller proteins containing 128 glutamines form both intranuclear and perinuclear aggregates. In contrast, larger NH2-terminal fragments of huntingtin proteins with 128 glutamines form exclusively perinuclear aggregates. These aggregates can form in the absence of endogenous huntingtin. Furthermore, expression of mutant huntingtin results in increased susceptibility to apoptotic stress that is greater with decreasing protein length and increasing polyglutamine size. As both intranuclear and perinuclear aggregates are clearly associated with increased cellular toxicity, this supports an important role for toxic polyglutamine-containing fragments forming aggregates and playing a key role in the pathogenesis of Huntington disease.  相似文献   

11.
Annexins are calcium-dependent phospholipid binding proteins that are implicated in the regulation of both intracellular and extracellular thrombostatic mechanisms in the vascular endothelium. Tight control of annexin gene expression and targeting of annexin proteins is therefore of importance in maintaining the health of the endothelium. Because annexins are abundant in vascular endothelial cells and could be either dysregulated by or contribute to anomalies in Ca2+ signaling, we investigated annexin gene expression and subcellular localization in human umbilical vein endothelial cells (HUVEC) in a model of chronic oxidative stress. HUVEC were cultured under mild hyperoxic conditions in a custom-built chamber to induce oxidative stress over a period of 12 days. Although annexin expression levels did not change significantly in response to hyperoxic stress, immunofluorescence analysis revealed striking effects on the subcellular localization of certain annexins, including the redistribution of annexins 5 and 6 from the cytosol to the nucleus. In addition, oxidative stress modulated the responses of certain annexins to stimulation with a range of pharmacological and physiological Ca2+-mobilizing agonists, in a manner that suggested that annexin localization is regulated via the complex integration of both Ca2+ and intracellular signaling pathways. These results show that differential regulation of annexin localization by oxidative stress may have a causative role in the cellular pathophysiology of vascular endothelial cell disease.  相似文献   

12.
Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease‐associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease‐associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression.  相似文献   

13.
Subcellular localization and activity of multidrug resistance proteins   总被引:10,自引:0,他引:10       下载免费PDF全文
The multidrug resistance (MDR) phenotype is associated with the overexpression of members of the ATP-binding cassette family of proteins. These MDR transporters are expressed at the plasma membrane, where they are thought to reduce the cellular accumulation of toxins over time. Our data demonstrate that members of this family are also expressed in subcellular compartments where they actively sequester drugs away from their cellular targets. The multidrug resistance protein 1 (MRP1), P-glycoprotein, and the breast cancer resistance protein are each present in a perinuclear region positive for lysosomal markers. Fluorescence-activated cell sorting analysis suggests that these three drug transporters do little to reduce the cellular accumulation of the anthracycline doxorubicin. However, whereas doxorubicin enters cells expressing MDR transporters, this drug is sequestered away from the nucleus, its subcellular target, in vesicles expressing each of the three drug resistance proteins. Using a cell-impermeable inhibitor of MRP1 activity, we demonstrate that MRP1 activity on intracellular vesicles is sufficient to confer a drug resistance phenotype, whereas disruption of lysosomal pH is not. Intracellular localization and activity for MRP1 and other members of the MDR transporter family may suggest different strategies for chemotherapeutic regimens in a clinical setting.  相似文献   

14.
15.
Intracellular localization of phospholipase D1 in mammalian cells   总被引:4,自引:0,他引:4       下载免费PDF全文
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.  相似文献   

16.
17.
We developed a high-throughput methodology, termed fluorescent tagging of full-length proteins (FTFLP), to analyze expression patterns and subcellular localization of Arabidopsis gene products in planta. Determination of these parameters is a logical first step in functional characterization of the approximately one-third of all known Arabidopsis genes that encode novel proteins of unknown function. Our FTFLP-based approach offers two significant advantages: first, it produces internally-tagged full-length proteins that are likely to exhibit native intracellular localization, and second, it yields information about the tissue specificity of gene expression by the use of native promoters. To demonstrate how FTFLP may be used for characterization of the Arabidopsis proteome, we tagged a series of known proteins with diverse subcellular targeting patterns as well as several proteins with unknown function and unassigned subcellular localization.  相似文献   

18.
TACC (transforming acidic coiled-coil) proteins were first identified by their ability to transform cell lines [1], and links between human cancer and the overexpression of TACC proteins highlight the importance of understanding the biological function of this family of proteins. Herein, we describe the characterization of a new member of the TACC family of proteins in Caenorhabditis elegans, TAC-1. In other systems, TACC proteins associate with the XMAP215 family of microtubule-stabilizing proteins; however, it is unclear whether TACC proteins have microtubule-based functions distinct from XMAP215. We depleted both the XMAP215 ortholog ZYG-9 and TAC-1 via dsRNA-mediated interference (RNAi). We found that tac-1(RNAi) resulted in microtubule-based defects that were very similar to zyg-9(RNAi). Furthermore, TAC-1 and ZYG-9 are required for long astral microtubules in general and long spindle microtubules during spindle assembly. Loss of either protein did not affect the alpha-tubulin immunofluorescence intensity near centrosomes; this finding suggests that microtubule nucleation was not compromised. Both proteins localize to centrosomes and the kinetochore/microtubule region of chromosomes in metaphase and early anaphase. Furthermore, we found that ZYG-9 and TAC-1 physically interact in vivo, and this interaction is important for the efficient localization of the ZYG-9/TAC-1 complex to centrosomes.  相似文献   

19.
Selectivity in the action of cAMP may be mediated by compartmentalized pools of cyclic AMP-dependent protein kinase (PKA). PKA type II is directed to different subcellular loci by interaction of the type II regulatory subunits (RIIalpha, RIIbeta) with A-kinase anchoring proteins. In order to separately investigate the subcellular localization of PKA type II isozymes, monospecific antibodies to human RIIalpha and RIIbeta subunits of PKA were developed. We demonstrate that centrosomes bind both RIIalpha and RIIbeta. Centrosomes were the preferred intracellular anchoring site for RIIbeta. However, centrosomal localization of RIIbeta was observed only in some highly differentiated cells such as keratinocytes, granulosa cells, and macrophages and in all neoplastic cell lines examined. Centrosomal localization of RIIbeta was not observed in normal undifferentiated cells such as fibroblasts, myoblasts, and T and B cells. In contrast, RIIalpha was abundant in the Golgi area and in the trans-Golgi network (TGN). Furthermore, although RIIalpha appeared to colocalize with microtubules in the Golgi/TGN, extractions with nonionic detergent demonstrated that RIIalpha was mainly membrane-associated. In addition, alterations of microtubule dynamics with Nocodazole or Taxol affected the distribution of the detergent-extractable pool of RIIalpha, indicating that RIIalpha may localize with microtubule-associated vesicles. Thus, RIIalpha and RIIbeta clearly localize differently in the Golgi-centrosomal region. This indicates specific roles for PKA isozymes containing either RIIalpha or RIIbeta.  相似文献   

20.
The human synuclein protein family includes alpha-synuclein, which has been linked to both familial and sporadic Parkinson's disease, and the highly homologous beta and gamma-synuclein. Mutations in alpha-synuclein cause autosomal dominant early onset Parkinson's, and the protein is found deposited in a fibrillar form in hereditary and idiopathic forms of the disease. No genetic link between beta and gamma-synuclein, and any neurodegenerative disease has been established, and it is generally considered that these proteins are not highly pathogenic. In addition, beta and gamma-synuclein are reported to aggregate less readily than alpha-synuclein in vitro. Indeed, beta-synuclein has been reported to protect against alpha-synuclein aggregation in vitro, as well as alpha-synuclein-mediated toxicity in vivo. Earlier, we compared the structural properties of the highly helical states adopted by all three synucleins in association with detergent micelles in an attempt to delineate the basis for functional differences between the three proteins. Here, we report a comparison of the structural and dynamic properties of the free states of all three proteins in order to shed light on differences that may help to explain their different propensities to aggregate, which in turn may underlie their differing contributions to the etiology of Parkinson's disease. We find that gamma-synuclein closely resembles alpha-synuclein in its free-state residual secondary structure, consistent with the more similar propensities of the two proteins to aggregate in vitro. beta-Synuclein, however, differs significantly from alpha-synuclein, exhibiting a lower predisposition towards helical structure in the second half of its lipid-binding domain, and a higher preference for extended structures in its C-terminal tail. Both beta and gamma-synuclein show less extensive transient long-range structure than that observed in alpha-synuclein. These results raise questions regarding the role of secondary structure propensities and transient long-range contacts in directing synuclein aggregation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号