首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two routes for the conversion of 5'-hydroxyaverantin (HAVN) to averufin (AVF) in the synthesis of aflatoxin have been proposed. One involves the dehydration of HAVN to the lactone averufanin (AVNN), which is then oxidized to AVF. Another requires dehydrogenation of HAVN to 5'-ketoaverantin, the open-chain form of AVF, which then cyclizes spontaneously to AVF. We isolated a gene, adhA, from the aflatoxin gene cluster of Aspergillus parasiticus SU-1. The deduced ADHA amino acid sequence contained two conserved motifs found in short-chain alcohol dehydrogenases-a glycine-rich loop (GXXXGXG) that is necessary for interaction with NAD(+)-NADP(+), and the motif YXXXK, which is found at the active site. A. parasiticus SU-1, which produces aflatoxins, has two copies of adhA (adhA1), whereas A. parasiticus SRRC 2043, a strain that accumulates O-methylsterigmatocystin (OMST), has only one copy. Disruption of adhA in SRRC 2043 resulted in a strain that accumulates predominantly HAVN. This result suggests that ADHA is involved in the dehydrogenation of HAVN to AVF. Those adhA disruptants that still made small amounts of OMST also accumulated other metabolites, including AVNN, after prolonged culture.  相似文献   

3.
4.
5.
Aflatoxins are polyketide-derived secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Among the catalytic steps in the aflatoxin biosynthetic pathway, the conversion of sterigmatocystin to O-methylsterigmatocystin and the conversion of dihydrosterigmatocystin to dihydro-O-methylsterigmatocystin are catalyzed by an S-adenosylmethionine-dependent O-methyltransferase. A cDNA library was constructed by using RNA isolated from a 24-h-old culture of wild-type A. parasiticus SRRC 143 and was screened by using polyclonal antiserum raised against a purified 40-kDa O-methyltransferase protein. A clone that harbored a full-length cDNA insert (1,460 bp) containing the 1,254-bp coding region of the gene omt-1 was identified by the antiserum and isolated. The complete cDNA sequence was determined, and the corresponding 418-amino-acid sequence of the native enzyme with a molecular weight of 46,000 was deduced. This 46-kDa native enzyme has a leader sequence of 41 amino acids, and the mature form of the enzyme apparently consists of 377 amino acids and has a molecular weight of 42,000. Direct sequencing of the purified mature enzyme from A. parasiticus SRRC 163 showed that 19 of 22 amino acid residues were identical to the amino acid residues in an internal region of the deduced amino acid sequence of the mature protein. The 1,460-bp omt-1 cDNA was cloned into an Escherichia coli expression system; a Western blot (immunoblot) analysis of crude extracts from this expression system revealed a 51-kDa fusion protein (fused with a 5-kDa beta-galactosidase N-terminal fragment).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
5'-Hydroxyaverantin (HAVN) was isolated from a mold, Emericella heterothallica IFO 30842. Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4, produced neither aflatoxins nor precursors in yeast extract-sucrose (YES) medium. When the postmicrosome (cytosol) fraction of NIAH-26, which had been prepared from the culture in YES medium, was incubated with norsolorinic acid (NA) in the presence of NADH or NADPH, averantin (AVN) was produced. The reverse reaction from AVN to NA was promoted by the addition of NAD or NADP (dehydrogenase reaction). When the microsome fraction of NIAH-26 was incubated with AVN, HAVN was produced in the presence of NADPH (monooxygenase reaction). HAVN was, furthermore, oxidized to averufin (AVR) by the cytosol fraction of NIAH-26 in the presence of NAD or NADP (dehydrogenase reaction). In the feeding experiments with A. parasiticus NIAH-26, aflatoxins were produced from AVN, HAVN, NA, and AVR but not from averufanin or averythrin. These results indicate that the reaction sequence NA in equilibrium AVN----HAVN----AVR is involved in the biosynthetic pathway of aflatoxins. The enzyme activities described here were dependent on the culture medium, and no enzyme activities were observed in the nonaflatoxigenic strain A. oryzae SYS-2 (IFO 4251).  相似文献   

7.
5'-Hydroxyaverantin (HAVN) was isolated from a mold, Emericella heterothallica IFO 30842. Aspergillus parasiticus NIAH-26, a UV-irradiated mutant of A. parasiticus SYS-4, produced neither aflatoxins nor precursors in yeast extract-sucrose (YES) medium. When the postmicrosome (cytosol) fraction of NIAH-26, which had been prepared from the culture in YES medium, was incubated with norsolorinic acid (NA) in the presence of NADH or NADPH, averantin (AVN) was produced. The reverse reaction from AVN to NA was promoted by the addition of NAD or NADP (dehydrogenase reaction). When the microsome fraction of NIAH-26 was incubated with AVN, HAVN was produced in the presence of NADPH (monooxygenase reaction). HAVN was, furthermore, oxidized to averufin (AVR) by the cytosol fraction of NIAH-26 in the presence of NAD or NADP (dehydrogenase reaction). In the feeding experiments with A. parasiticus NIAH-26, aflatoxins were produced from AVN, HAVN, NA, and AVR but not from averufanin or averythrin. These results indicate that the reaction sequence NA in equilibrium AVN----HAVN----AVR is involved in the biosynthetic pathway of aflatoxins. The enzyme activities described here were dependent on the culture medium, and no enzyme activities were observed in the nonaflatoxigenic strain A. oryzae SYS-2 (IFO 4251).  相似文献   

8.
Oxidative stress is recognized as a trigger of different metabolic events in all organisms. Various factors correlated with oxidation, such as the beta-oxidation of fatty acids and their enzymatic or nonenzymatic by-products (e.g., precocious sexual inducer factors and lipoperoxides) have been shown to be involved in aflatoxin formation. In the present study, we found that increased levels of reactive oxygen species (ROS) were correlated with increased levels of aflatoxin biosynthesis in Aspergillus parasiticus. To better understand the role of ROS formation in toxin production, we generated a mutant (Delta ApyapA) having the ApyapA gene deleted, given that ApyapA orthologs have been shown to be part of the antioxidant response in other fungi. Compared to the wild type, the mutant showed an increased susceptibility to extracellular oxidants, as well as precocious ROS formation and aflatoxin biosynthesis. Genetic complementation of the Delta ApyapA mutant restored the timing and quantity of toxin biosynthesis to the levels found in the wild type. The presence of putative AP1 (ApYapA orthologue) binding sites in the promoter region of the regulatory gene aflR further supports the finding that ApYapA plays a role in the regulation of aflatoxin biosynthesis. Overall, our results show that the lack of ApyapA leads to an increase in oxidative stress, premature conidiogenesis, and aflatoxin biosynthesis.  相似文献   

9.
A novel gene, fas-1A, directly involved in aflatoxin B1 (AFB1) biosynthesis, was cloned by genetic complementation of an Aspergillus parasiticus mutant strain, UVM8, blocked at two unique sites in the AFB1 biosynthetic pathway. Metabolite conversion studies localized the two genetic blocks to early steps in the AFB1 pathway (nor-1 and fas-1A) and confirmed that fas-1A is blocked prior to nor-1. Transformation of UVM8 with cosmids NorA and NorB restored function in nor-1 and fas-1A, resulting in synthesis of AFB1. An 8-kb SacI subclone of cosmid NorA complemented fas-1A only, resulting in accumulation of norsolorinic acid. Gene disruption of the fas-1A locus blocked norsolorinic acid accumulation in A. parasiticus B62 (nor-1), which normally accumulates this intermediate. These data confirmed that fas-1A is directly involved in AFB1 synthesis. The predicted amino acid sequence of fas-1A showed a high level of identity with extensive regions in the enoyl reductase and malonyl/palmityl transferase functional domains in the beta subunit of yeast fatty acid synthetase. Together, these data suggest that fas-1A encodes a novel fatty acid synthetase which synthesizes part of the polyketide backbone of AFB1. Additional data support an interaction between AFB1 synthesis and sclerotium development.  相似文献   

10.
Sterigmatocystin (ST) and aflatoxin are carcinogenic end point metabolites derived from the same biochemical pathway, which is found in several Aspergillus spp. Recently, an ST gene cluster, containing approximately 25 distinct genes that are each proposed to function specifically in ST biosynthesis, has been identified in Aspergillus nidulans. Each of these structural genes is named stc (sterigmatocystin) followed by a consecutive letter of the alphabet. We have previously described stcU (formerly verA) as encoding a keto-reductase required for the conversion of versicolorin A to ST. We now describe a second A. nidulans gene, stcS (formerly verB), that is located within 2 kb of stcU in the ST gene cluster. An stcS-disrupted strain of A. nidulans, TSS17, was unable to produce ST and converted ST/aflatoxin precursors to versicolorin A rather than ST, indicating that stcS functions at the same point in the pathway as stcU. Genomic sequence analysis of stcS shows that it encodes a cytochrome P-450 monooxygenase and constitutes a novel P-450 family, CYP59. Assuming that StcU activity mimics that of similar P-450s, it is likely that StcU catalyzes one of the proposed oxidation steps necessary to convert versicolorin A to ST. These results constitute the first genetic proof that the conversion of versicolorin A to ST requires more than one enzymatic activity.  相似文献   

11.
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1'S,5'S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1'R,5'R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1'S,5'S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.  相似文献   

12.
A reaction sequence, norsolorinic acid (NA)-->averantin (AVN)-->5'-hydroxyaverantin (HAVN)-->averufin (AVR), is the early part of a biosynthetic pathway for aflatoxins. In this study, we determined the stereochemical relationship among these metabolites by using chiral high-performance liquid chromatography. In cell-free experiments using the cytosol fraction of Aspergillus parasiticus NIAH-26, (1'S)-AVN was exclusively produced from NA in the presence of NADPH. Also, only (1'S)-AVN, and not (1'R)-AVN, served as a substrate for the reverse reaction from AVN to NA. When the microsome fraction of NIAH-26 was incubated with (1'S)-AVN in the presence of NADPH, two HAVN diastereomers and one AVR enantiomer were formed, whereas these substances were never produced from (1'R)-AVN. Moreover, (1'S,5'R)-AVR was exclusively formed from both HAVN diastereomers by the cytosol fraction in the presence of NAD. The feeding experiments using this mutant showed that aflatoxins were produced from (1'S,5'R)-AVR but not from (1'R,5'S)-AVR. These results indicate that the enzymes involved in this pathway show strict stereospecificity to their substrates and that the configuration of (1'S,5'R)-AVR leading to the formation of aflatoxins is due to the stereospecificity of NA dehydrogenase which catalyzes the reaction between (1'S)-AVN and NA.  相似文献   

13.
14.
15.
Wild-type Aspergillus parasiticus produces, in addition to the colorless aflatoxins, a number of pigmented secondary metabolites. Examination of these pigments demonstrated that a major component was an anthraquinone, averufanin. Radiolabeling studies with [14C]averufanin showed that 23% of the label was incorporated into aflatoxin B1 by the wild type and that 31% of the label was incorporated into O-methylsterigmatocystin by a non-aflatoxin-producing isolate. In similar studies with blocked mutants of A. parasiticus the 14C label from averufanin was accumulated in averufin (72%) and versicolorin A (54%) but not averantin. The results demonstrate that averufanin is a biosynthetic precursor of aflatoxin B1 between averantin and averufin.  相似文献   

16.
17.
Summary The uptake of various 14C labelled compounds like (1-14C) glucose, (1-14C) acetate, (2-14C) uracil, (1-14C) leucine and (14C–CH3) methionine was studied in Aspergillus parasiticus. A comparative study of asparagine deficient, zinc deficient and SLS cultures revealed different growth patterns. High lipid levels under zinc and asparagine deficiency were observed. During the stationary phase the synthesis of proteins and DNA declined. The uptake of 14C labelled glucose, methionine and acetate was maximum in asparagine deficient cultures during the transitional and stationary phase of growth. Maximum uptake of labelled methionine and glucose occured during the exponential growth phase (45 h). The uptake of labelled leucine was highest under asparagine deficiency during the exponential and transitional phases but reached a minimum during stationary phase. The uptake of labelled uracil remained high throughout in the asparagine deficient cultures. The mechanism of inhibition of aflatoxin biosynthesis in the absence of zinc and asparagine seems to be different.  相似文献   

18.
《Gene》1996,169(1):105-109
The ERG5 gene from Saccharomyces cerevisiae was cloned by complementation of an erg5-1 mutation using a negative selection protocol involving screening for nystatin-sensitive transformants. ERG5 is the putative gene encoding the C-22 sterol desaturase required in ergosterol biosynthesis. The functional gene was localized to a 2.15-kb SacI-EcoRI DNA fragment containing an open reading frame of 538 amino acids (aa). ERG5 contains a 10-aa motif consistent with its role as a cytochrome P-450 (CyP450) enzyme and is similar to a number of mammalian CyP450 enzymes. Gene disruption demonstrates that ERG5 is not essential for cell viability  相似文献   

19.
20.
Wild-type Aspergillus parasiticus produces, in addition to the colorless aflatoxins, a number of pigmented secondary metabolites. Examination of these pigments demonstrated that a major component was an anthraquinone, averufanin. Radiolabeling studies with [14C]averufanin showed that 23% of the label was incorporated into aflatoxin B1 by the wild type and that 31% of the label was incorporated into O-methylsterigmatocystin by a non-aflatoxin-producing isolate. In similar studies with blocked mutants of A. parasiticus the 14C label from averufanin was accumulated in averufin (72%) and versicolorin A (54%) but not averantin. The results demonstrate that averufanin is a biosynthetic precursor of aflatoxin B1 between averantin and averufin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号