首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The human Xp/Yp telomere-junction region exhibits high levels of sequence polymorphism and linkage disequilibrium. To determine whether this is a general feature of human telomeres, we have undertaken sequence analysis at the 12q telomere and have extended the analysis at Xp/Yp. A total of 22 single-nucleotide polymorphisms (SNPs) and one 30-bp duplication were detected in the 1,870 bp adjacent to the 12q telomere. Twenty polymorphic positions were in almost complete linkage disequilibrium, creating three common diverged haplotypes accounting for 80% of 12q telomeres in the white population. A further 6% of 12q telomeres contained a 1,439-bp deletion in the DNA flanking the telomere. The remaining 13% of 12q telomeres did not amplify with the primers used (nulls). The distribution of telomere (TTAGGG) and variant repeats within 12q telomeres was hypervariable, but alleles with similar distribution patterns were associated with the same haplotype in the telomere-adjacent DNA. These data suggest that 12q telomeres, like Xp/Yp telomeres, exhibit low levels of homologous recombination and evolve along haploid lineages. In contrast, high levels of homologous recombination occur in the adjacent proterminal regions of human chromosomes. This suggests that there is a localized telomere-mediated suppression of recombination. In addition, the genetic characteristics of these regions may provide a source of deep lineages for the study of early human evolution, unaffected by both natural selection and recombination. To explain the presence of a few diverged haplotypes adjacent to the Xp/Yp and 12q telomeres, we propose a model that involves the hybridization of two archaic hominoid lineages ultimately giving rise to modern Homo sapiens.  相似文献   

2.
BACKGROUND: Consistent average length differences between species and chromosome arm differences within species indicate that telomere length is genetically determined. This seems to contradict an observed large variation in lengths of the same human telomere between metaphases of the same individual. We examined the extent to which the variation in the telomeres of the human X and Y chromosomes is heritable, induced, or technical in origin. METHODS: Metaphase chromosomes were stained by fluorescence in situ hybridization with a telomere repeat-specific probe, and fluorescence intensities of the X and Y chromosomes were measured. If telomere length variation is predominantly genetically determined and a 50% probability of meiotic recombination between the pseudo-autosomal regions of Yp and Xp in the father is taken into account, one expects an equal chance that the Yp telomere of a son is derived from his father's Xp or Yp telomere. This implies that the Yp/Yq telomere ratios in fathers and sons will be identical in the absence of paternal meiotic recombination and different when recombination occurs. RESULTS: Among five father-son pairs, four showed similar Yp/Yq ratios (P > 0.05), whereas one pair exhibited a large difference in the Yp/Yq ratio that was attributable to a significantly longer Xp than Yp telomere in the father and a presumptive meiotic exchange between X and Y during paternal meiosis. Further, the Xq telomere exhibited a generally shorter telomere length than the others. CONCLUSIONS: The high variation in telomere length appeared to be intracellular (between sister chromatids) and, hence, technical in nature. We found no measurable induced variation in the cells studied, implying that, if induced variation exists, it is small compared with the technical variation.  相似文献   

3.
In association with a phylogenetic tree of Asparagales, our previous results showed that a distinct clade included plant species where the ancestral, Arabidopsis-type of telomeric repeats (TTTAGGG)n had been partially, or fully, replaced by the human-type telomeric sequence (TTAGGG)n. Telomerases of these species synthesize human repeats with a high error rate in vitro. Here we further characterize the structure of telomeres in these plants by analyzing the overall arrangement of major and minor variants of telomeric repeats using fluorescence in situ hybridization on extended DNA strand(s). Whilst the telomeric array is predominantly composed of the human variant of the repeat, the ancestral, Arabidopsis-type of telomeric repeats was ubiquitously observed at one of the ends and/or at intercalary positions of extended telomeric DNAs. Another variant of the repeat typical of Tetrahymena was observed interspersed in about 20% of telomerics. Micrococcal nuclease digestions indicated that Asparagales plants with a human-type of telomere have telomeric DNA organised into nucleosomes. However, unexpectedly, the periodicity of the nucleosomes is not significantly shorter than bulk chromatin as is typical of telomeric chromatin. Using electrophoretic mobility shift assays we detected in Asparagales plants with a human type of telomere a 40-kDa protein that forms complexes with both Arabidopsis- and human-type G-rich telomeric strands. However, the protein shows a higher affinity to the ancestral Arabidopsis-type sequence. Two further proteins were found, a 25-kDa protein that binds specifically to the ancestral sequence and a 15-kDa protein that binds to the human-type telomeric repeat. We discuss how the organisation of the telomere repeats in Asparagales may have arisen and stabilised the new telomere at the point of mutation.  相似文献   

4.
5.
Hills M  Jeyapalan JN  Foxon JL  Royle NJ 《Genomics》2007,89(4):480-489
Subterminal regions, juxtaposed to telomeres on human chromosomes, contain a high density of segmental duplications, but relatively little is known about the evolutionary processes that underlie sequence turnover in these regions. We have characterized a segmental duplication adjacent to the Xp/Yp telomere, each copy containing a hypervariable array of the DXYS14 minisatellite. Both DXYS14 repeat arrays mutate at a high rate (0.3 and 0.2% per gamete) but linkage disequilibrium analysis across 27 SNPs and a direct crossover assay show that recombination during meiosis is suppressed. Therefore instability at DXYS14a and b is dominated by intra-allelic processes or possibly conversion limited to the repeat arrays. Furthermore some chromosomes (14%) carry only one copy of the duplicon, including one DXYS14 repeat array that is also highly mutable (1.2% per gamete). To explain these and other observations, we propose there is another low-rate mutation process that causes copy number change in part or all of the duplicon.  相似文献   

6.
In this study, we examined the role of recombination at the telomeres of the yeast Kluyveromyces lactis. We demonstrated that an abnormally long and mutationally tagged telomere was subject to high rates of telomere rapid deletion (TRD) that preferentially truncated the telomere to near-wild-type size. Unlike the case in Saccharomyces cerevisiae, however, there was not a great increase in TRD in meiosis. About half of mitotic TRD events were associated with deep turnover of telomeric repeats, suggesting that telomeres were often cleaved to well below normal length prior to being reextended by telomerase. Despite its high rate of TRD, the long telomere showed no increase in the rate of subtelomeric gene conversion, a highly sensitive test of telomere dysfunction. We also showed that the long telomere was subject to appreciable rates of becoming elongated substantially further through a recombinational mechanism that added additional tagged repeats. Finally, we showed that the deep turnover that occurs within normal-length telomeres was diminished in the absence of RAD52. Taken together, our results suggest that homologous recombination is a significant process acting on both abnormally long and normally sized telomeres in K. lactis.  相似文献   

7.
Transcription of telomere repeats in protozoa.   总被引:16,自引:5,他引:11       下载免费PDF全文
  相似文献   

8.
9.
Japanese red pine Pinus densiflora has 2 n=24 chromosomes and after FISH-detection of Arabidopsis-type (A-type) telomere sequences, many telomere signals were observed on these chromosomes at interstitial and proximal regions in addition to the chromosome ends. These interstitial and proximal signal sites were observed as DAPI-positive bands, suggesting that the interstitial and proximal telomere signal sites are composed of AT-rich highly repetitive sequences. Four DNA clones (PAL810, PAL1114, PAL1539, PAL1742) localized at the interstitial telomere signals were selected from AluI-digested genomic DNA library using colony blot hybridization probed with A-type telomere sequences and characterized using FISH and Southern blot hybridization. The AT-contents of these selected four clones were 60.8–76.3%, and repeat units of the telomere sequence and degenerated telomere sequences were found in their nucleotide sequences. Except for two sites of PAL1114, FISH signals of the four clones co-localized with interstitial and proximal A-type telomere sequence signals. FISH signals a showed similar distribution pattern, but the patterns of signal intensity were different among the four clones. PAL810, PAL1539 and PAL 1742 showed similar FISH signal patterns, and the differences were only with respect to the signal intensity of some signal sites. PAL1114 had unique signals that appeared on chromosomes 7 and 10. Based on results of the Southern blot hybridization these four sequences are not arranged tandemly. Our results suggest that the interstitial A-type telomere sequence signal sites were composed of a mixture of several AT-rich repetitive sequences and that these repetitive sequences contained A-type telomere sequences or degenerated A-type telomere sequence repeats.  相似文献   

10.
Cloned DNA fragments of Drosophila miranda which label all chromosome ends show a basic tandem repeat unit of 4.4 kb. The D. miranda telomere specific tandem repeats do not cross-hybridize with genomic D. melanogaster DNA which itself contains telomere repeat units of 3 kb. For a more detailed analysis of the functional criteria of telomere specific sequences we determined the repetition frequency of the tandem repeat units. As a low estimate we found a repetition frequency of 20 for female D. miranda DNA. This is on average equivalent to 2 telomere repeat units per chromosome end in the female D. miranda karyotype. However, a variable number of tandem repeat units per chromosome end would describe more closely the obtained differences in the labeling intensity between the individual chromosomes (X1L-5). For the D. miranda male DNA we determined a repetition frequency of 90. The frequency difference of 70 copies between male and female DNA must be due to the Y-chromosome.  相似文献   

11.
Telomere repeat sequences cap the ends of eucaryotic chromosomes and help stabilize them. At interstitial sites, however, they may destabilize chromosomes, as suggested by cytogenetic studies in mammalian cells that correlate interstitial telomere sequence with sites of spontaneous and radiation-induced chromosome rearrangements. In no instance is the length, purity, or orientation of the telomere repeats at these potentially destabilizing interstitial sites known. To determine the effects of a defined interstitial telomere sequence on chromosome instability, as well as other aspects of DNA metabolism, we deposited 800 bp of the functional vertebrate telomere repeat, TTAGGG, in two orientations in the second intron of the adenosine phosphoribosyltransferase (APRT) gene in Chinese hamster ovary cells. In one orientation, the deposited telomere sequence did not interfere with expression of the APRT gene, whereas in the other it reduced mRNA levels slightly. The telomere sequence did not induce chromosome truncation and the seeding of a new telomere at a frequency above the limits of detection. Similarly, the telomere sequence did not alter the rate or distribution of homologous recombination events. The interstitial telomere repeat sequence in both orientations, however, dramatically increased gene rearrangements some 30-fold. Analysis of individual rearrangements confirmed the involvement of the telomere sequence. These studies define the telomere repeat sequence as a destabilizing element in the interior of chromosomes in mammalian cells.  相似文献   

12.
Telomeric DNA of Tetrahymena thermophila consists of a long stretch of (TTGGGG)n double-stranded repeats with a single-stranded (TTGGGG)2 3' overhang at the end of the chromosome. We have identified and characterized a protein that specifically binds to a synthetic telomeric substrate consisting of duplex DNA and the 3' telomeric repeat overhang. This protein is called TEP (telomere end-binding protein). A change from G to A in the third position of the TTGGGG overhang repeat converts the substrate to a human telomere analog and reduces the binding affinity approximately threefold. Changing two G's to C's in the TTGGGG repeats totally abolishes binding. However, permutation of the Tetrahymena repeat sequence has only a minor effect on binding. A duplex structure adjacent to the 3' overhang is required for binding, although the duplex need not contain telomeric repeats. TEP does not bind to G-quartet DNA, which is formed by many G-rich sequences. TEP has a greatly reduced affinity for RNA substrates. The copy number of TEP is at least 2 x 10(4) per cell, and it is present under different conditions of cell growth and development, although its level varies. UV cross-linking experiments show that TEP has an apparent molecular mass of approximately 65 kDa. Unlike other telomere end-binding proteins, TEP is sensitive to high salt concentrations.  相似文献   

13.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

14.
Human POT1 facilitates telomere elongation by telomerase   总被引:39,自引:0,他引:39  
Mammalian telomeric DNA is mostly composed of double-stranded 5'-TTAGGG-3' repeats and ends with a single-stranded 3' overhang. Telomeric proteins stabilize the telomere by protecting the overhang from degradation or by remodeling the telomere into a T loop structure. Telomerase is a ribonucleoprotein that synthesizes new telomeric DNA. In budding yeast, other proteins, such as Cdc13p, that may help maintain the telomere end by regulating the recruitment or local activity of telomerase have been identified. Pot1 is a single-stranded telomeric DNA binding protein first identified in fission yeast, where it was shown to protect telomeres from degradation [10]. Human POT1 (hPOT1) protein is known to bind specifically to the G-rich telomere strand. We now show that hPOT1 can act as a telomerase-dependent, positive regulator of telomere length. Three splice variants of hPOT1 were overexpressed in a telomerase-positive human cell line. All three variants lengthened telomeres, and splice variant 1 was the most effective. hPOT1 was unable to lengthen the telomeres of telomerase-negative cells unless telomerase activity was induced. These data suggest that a normal function of hPOT1 is to facilitate telomere elongation by telomerase.  相似文献   

15.
Extensive telomere repeat arrays in mouse are hypervariable.   总被引:22,自引:2,他引:20       下载免费PDF全文
In this study we have analysed mouse telomeres by Pulsed Field Gel Electrophoresis (PFGE). A number of specific restriction fragments hybridising to a (TTA-GGG)4 probe in the size range 50-150kb can be detected. These fragments are devoid of sites for most restriction enzymes suggesting that they comprise simple repeats; we argue that most of these are likely to be (TTAGGG)n. Each discrete fragment corresponds to the telomere of an individual chromosome and segregates as a Mendelian character. However, new size variants are being generated in the germ line at very high rates such that inbred mice are heterozygous at all telomeres analysable. In addition we show that specific small (approximately 4-12kb) fragments can be cleaved within some terminal arrays by the restriction enzyme MnII which recognises 5'(N7)GAGG3'. Like the complete telomere-repeat arrays (TRA's) these fragments form new variants at high rates and possibly by the same process. We speculate on the mechanisms that may be involved.  相似文献   

16.
We analyzed sites of macronuclear telomere addition at a single genetic locus in Paramecium tetraurelia. We showed that in homozygous wild-type cells, differential genomic processing during macronuclear development resulted in the A surface antigen gene being located 8, 13, or 26 kilobases upstream from a macronuclear telomere. We describe variable rearrangements that occurred at the telomere 8 kilobases from the A gene. A mutant (d48) that forms a telomere near the 5' end of the A gene was also analyzed. This mutant was shown to create simple terminal deletions; telomeric repeats were added directly to the truncated wild-type A gene sequence. In both the mutant and wild-type cells, the telomeric sequences (a mixture of C4A2 and C3A3 repeats) were added to various sequences within a specific 200- to 500-base-pair region rather than to a single site. No similarities were found in the primary sequences surrounding the telomere addition sites. The mutation in d48 changed the region of telomere addition at the A gene locus; this is the first example in ciliates of a mutation that affects the site of telomere addition.  相似文献   

17.
The molecular and cytological organization of the telomeric repeat (TR) and the subtelomeric repeat (TGR1) of tomato were investigated by fluorescence in situ hybridization (FISH) techniques. Hybridization signals on extended DNA fibres, visualized as linear fluorescent arrays representing individual telomeres, unequivocally demonstrated the molecular co-linear arrangement of both repeats. The majority of the telomeres consisted of a TR and a TGR1 region separated by a spacer. Microscopic measurements of the TR and TGR1 signals revealed high variation in length of both repeats, with maximum sizes of 223 and 1330 kb, respectively. A total of 27 different combinations of TR and TGR1 was detected, suggesting that all chromosome ends have their own unique telomere organization. The fluorescent tracks on the extended DNA fibres were subdivided into four classes: (i) TR–spacer–TGR1; (ii) TR–TGR1; (iii) only TR; (iv) only TGR1. FISH to pachytene chromosomes enabled some of the TR/TGR1 groups to be assigned to specific chromosome ends and to interstitial regions. These signals also provided evidence for a reversed order of the TR and TGR1 sites at the native chromosome ends, suggesting a backfolding telomere structure with the TGR1 repeats occupying the most terminal position of the chromosomes. The FISH signals on diakinesis chromosomes revealed that distal euchromatin areas and flanking telomeric heterochromatin remained highly decondensed around the chiasmata in the euchromatic chromosome areas. The rationale for the occurrence and distribution of the TR and TGR1 repeats on the tomato chromosomes are discussed.  相似文献   

18.
Chromatin diminution in the parasitic nematode Ascaris suum represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. At the molecular level, it is a rather complex event including chromosome breakage, new telomere formation and DNA degradation. Analysis of a cloned somatic telomere (pTel1) revealed that it has been newly created during the process of chromatin diminution by the addition of telomeric repeats (TTAGGC)n to a chromosomal breakage site (Müller et al., 1991). However, telomere addition does not occur at a single chromosomal locus, but at many different sites within a short chromosomal region, termed CBR1 (chromosomal breakage region 1). Here we present the cloning and the analysis of 83 different PCR amplified telomere addition sites from the region of CBR1. The lack of any obvious sequence homology shared among them argues for a telomerase-mediated healing process, rather than for a recombinational event. This hypothesis is strongly supported by the existence of 1-6 nucleotides corresponding to and being in frame with the newly added telomeric repeats at almost all of the telomere addition sites. Furthermore, we show that telomeres are not only added to the ends of the retained chromosomal portions, but also to the eliminated part of the chromosomes, which later on become degraded in the cytoplasm. This result suggests that de novo telomere formation during the process of chromatin diminution represents a non-specific process which can heal any broken DNA end.  相似文献   

19.
20.
We describe the construction, structural properties and enzymatic substrate abilities of a series of circular DNA oligonucleotides that are entirely composed of the C-rich human telomere repeat, (CCCTAA)n. The nanometer-sized circles range in length from 36 to 60 nt, and act as templates for synthesis of human telomere repeats in vitro. The circles were constructed successfully by the application of a recently developed adenine-protection strategy, which allows for cyclization/ligation with T4 DNA ligase. Thermal denaturation studies showed that at pH 5.0, all five circles form folded structures with similar stability, while at pH 7.0 no melting transitions were seen. Circular dichroism spectra at the two pH conditions showed evidence for i-motif structures at the lower pH value. The series was tested as rolling circle templates for a number of DNA polymerases at pH = 7.3–8.5, using 18mer telomeric primers. Results showed that surprisingly small circles were active, although the optimum size varied from enzyme to enzyme. Telomeric repeats 1000 nt in length could be synthesized in 1 h by the Klenow (exo-) DNA polymerase. The results establish a convenient way to make long human telomeric repeats for in vitro study of their folding and interactions, and establish optimum molecules for carrying this out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号