首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Temporal patterns of unit activity in the mesencephalic reticular nuclei (n. cuneiformis, n. parabrachialis) were studied in unrestrained rats during the sleep-waking cycle; activity was derived by means of movable metallic microelectrodes. Analysis of the data showed that most neurons of these mesencephalic reticular nuclei (76 and 66% respectively) generate activity with the highest frequency during active waking and the emotional stage of paradoxical sleep; they discharge with lower frequency during passive wakefulness and the nonemotional stage of paradoxical sleep, and they exhibit least activity during slow-wave sleep. Comparatively few neurons (24 and 15%) demonstrate the opposite kind of temporal pattern of activity: They discharge more intensively during slow-wave sleep and more slowly during active wakefulness and the emotional stage of paradoxical sleep. Activity of these neurons during quiet wakefulness and the nonemotional stage of paradoxical sleep reaches the level of activity observed during slow-wave sleep. Neurons discharging intensively during active wakefulness were found in n. parabrachialis; their discharge frequency during passive wakefulness and slow-wave sleep and its frequency was least during paradoxical sleep. The similarity and differences of the neurophysiological mechanisms of regulation of the phases and stages of the sleepwaking cycle are discussed.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 678–690, September–October, 1984.  相似文献   

2.
Cortical EEG and multiunit activity (MUA) of the mesencephalic reticular formation (MRF), area hypothalami anterior (AH) and the nucleus amygdalae basalis (AMY) were studied before and after different doses of alphadione (Althesin) and hexobarbitone (Evipan-Natrium) given to cats with chronically implanted electrodes. Non-anaesthetic doses of alphadione (0.15 ml/kg; 0.3 ml/kg; 0.6 ml/kg and 1.2 ml/kg i.p.) had sedative effects decreasing selectively the MUA in the MRF. In doses of 2.0 ml/kg, 2.4 ml/kg and 3.0 ml/kg i.p., alphadione induced anaesthesia which was associated with a rapid decrease of MUA in the MRF and by a gradual decrease of activity in the AH and AMY. The i.p. dose of 3.0 ml/kg abolished MUA responses of the reticular formation to acoustic, visual and somatic stimulation but failed to block responses to pain. Deep anaesthesia with lasting analgesia could be maintained by i.v. infusion (0.075 ml/kg/min). This procedure blocked the responsiveness to painful stimulation while pharyngeal and laryngeal reflexes were maintained. Hexobarbitone in a dose of 20.0 mg/kg i.p. did not produce anaesthesia in the cat. Administration of 40.0 mg/kg i.p. resulted in a rapid decrease of MUA in the MRF, AH and AMY, MUA responses to each stimulation were abolished and the pharyngeal reflex was blocked.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The effect of ionophoretically applied pentobarbital (PB) upon neurones in the nucleus reticularis gigantocellularis of the rat was studied. PB applied through a micropipette depressed the spontaneous activity of 81% of the neurones tested; the remaining neurones did not change their firing rates. Regardless of current intensities used for PB ejection (5-60 nA) there was no increase in the firing rate during PB administration. The depression was dependent upon both the control firing rate and the PB dose; a total depression of activity was observed at currents between 40 and 60 nA. EC50 (15.5 nA, about 5 X 10(-5) mol.l-1--the drug concentration was approximated theoretically) was assessed from the dose-response curve. Repeated application resulted in a shift of EC50 towards higher current values (desensitization). The Hill coefficient was calculated in conformity with the classical theory. From its value (1.4), it may be assumed that the occupation of only one subunit of the binding site is enough to give a response. Possible mechanisms of action of PB upon neurones are discussed.  相似文献   

10.
On microiontophoretic application of acetylcholine, noradrenalin, and serotonin to single neurons of the mesencephalic reticular formation of unanesthetized rabbits, qualitative changes in responses to one or more of these biologically active substances were discovered in about 50% of cells after electrical stimulation of the negative emotiogenic zone of the ventromedial hypothalamus. Changes in chemical sensitivity of reticular neurons to noradrenalin and serotonin were observed twice as often as to acetylcholine. It is suggested that a reorganization of the neurochemical properties of the central neurons may be one of the mechanisms of formation of negative emotional states.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 506–514, September–October, 1981.  相似文献   

11.
Responses of single units in the reticular and ventrolateral thalamic nuclei were studied in acute experiments on curarized cats before and after intravenous injection of small doses (0.5–15 mg/kg) of pentobarbital, with simultaneous derivation of activity by two electrodes. After injection of pentobarbital, unit activity in the reticular nucleus consisted of high-frequency grouped (52.5% of 40 neurons) or continuous (30%) discharges as long as barbiturate spindles were present in the electrocorticogram. Activity of only four neurons (10%) of this nucleus was inhibited during the presence of spindles. In all other neurons of the reticular nucleus (7.5%) the character of discharges was unchanged after injection of pentobarbital. The appearance of grouped discharges, repeated several times (66.5% of 40 neurons), or blocking of activity (30%) throughout the period of spindle recording was observed in neurons of the ventrolateral nucleus. The remaining neurons of that nucleus (3.5%) did not respond to intravenous pentobarbital. The appearance of high-frequency discharges in neurons of the reticular nucleus while spindles were recorded coincided with a period of silence in neurons of the ventrolateral nucleus (58.5% of 34 pairs of neurons). High-frequency electrical stimulation of the mesencephalic reticular formation led to asynchronous activation of neurons of the ventrolateral nucleus (82%) and inhibition of unit activity in the reticular nucleus (88%).I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 517–524, September–October, 1982.  相似文献   

12.
The neurotransmitter(s) involved in the transmission of nociceptive information in the mesencephalic reticular formation (MRF) of the rat have not been identified. Acetylcholine (ACh), substance P (SP), neurotensin (NT), norepinephrine (NE) and dopamine (DA) have all been implicated as putative neurotransmitters involved in nociception. All of these compounds were microiontophoretically administered in the MRF of rats to determine which, if any, mimicked the effects produced by a nociceptive stimulus (foot pinch). This is only one of several criteria that a substance should meet to be considered a nociceptive neurotransmitter in the MRF. ACh and NE mimicked the effects of the nociceptive stimulus in 61% and 67% respectively of the cells tested; NT, DA and SP mimicked the effects of the nociceptive stimulus less frequently (33%, 30%, 23% respectively). Therefore, the nociceptive neurotransmitters in the MRF appear to be ACh and NE; NT, DA and SP may be neurotransmitters with a less important role in nociception in the MRF.  相似文献   

13.
Averaged evoked potentials in the inferior colliculus (IC), medial geniculate nucleus (MG) and reticular formation (RF) of chronically implanted and freely moving cats were measured using auditory step functions in the form of tone bursts of 2000 Hz. The most prominent components of the AEP of the inferior colliculus were a positive wave of 13 msec and a negative wave of 40–55 msec latency. The AEP of the medial geniculate nucleus was characterized by a large negative wave peaking at 35–40 msec. During spindle sleep and slow wave sleep stages changes in the AEPs of both nuclei occured.Transient evoked responses of the inferior colliculus, medial geniculate nucleus and reticular formation were transformed to the frequency domain using the Laplace transform (one sided Fourier transform) in order to obtain frequency characteristics of the systems under study. The amplitude characteristics of IC, MG. and RF obtained in this way revealed maxima in alpha (8–13 Hz), beta (18–35 Hz) and higher frequency (50–80 Hz) ranges. During spindle sleep stage a maximum in the theta frequency range (3–8 Hz) and during slow wave sleep maximum in the delta (1–3 Hz) frequency range appeared in the amplitude characteristics of these nuclei.The amplitude characteristics of the inferior colliculus and medial geniculate nucleus were compared with the amplitude characteristics of other brain structures. The comparison of AEPs and amplitude frequency characteristics obtained using these AEPs reveals that the existence of a number of peaks (waves) with different latencies in the time course does not necessarily indicate the existence of different functional structures or neural groups giving rise to these waves. The entire time course of evoked potentials and not the number and latencies of the waves, carries, the whole information concerning different activities and frequency selectivities of brain structures.Supported by Turkish Scientific and Technical Research Council Grant TAG-266.Presented in Part at the VIIIth International Congress of Electroencephalography and Clinical Neurophysiology in Marseilles, September 1–7, 1973.  相似文献   

14.
15.
1. Neurones in the paramedian reticular nucleus of decerebrate, unanaesthetised cats have been identified by microelectrode recording combined with antidromic activation of their axons in the ipsilateral inferior cerebellar peduncle. Most paramedian reticular neurones were not influenced by somatic stimulation. 2. When applied by iontophoresis from multibarrelled micropipettes acetylcholine and 5-hydroxytryptamine excited all but a few paramedian reticular neurones while l-noradrenaline inhibited almost all the neurones investigated. The excitatory response to acetylcholine could be antagonised by gallamine. 3. The paramedian reticular nucleus appears to be a relatively homogeneous group of neurones, pharmacologically as well as anatomically.  相似文献   

16.
17.
18.

Background

Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state.

Methodology/Principal Findings

Long-duration, multi-site forebrain field recordings were performed in urethane-anaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (∼11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane.

Conclusions/Significance

Our results suggest that urethane promotes a condition of behavioural unconsciousness that closely mimics the full spectrum of natural sleep. The use of urethane anaesthesia as a model system will facilitate mechanistic studies into sleep-like brain states and their alternations. In addition, it could also be exploited as a tool for the discovery of new molecular targets that are designed to promote sleep without compromising state alternations.  相似文献   

19.
20.
Acetylcholine (ACh) and norepinephrine (NE) have been identified previously as putative nociceptive neurotransmitters in the mesencephalic reticular formation (MRF) of the rat because they frequently mimic the change in neuronal firing (usually an increase) evoked by a noxious stimulus (NS). The purpose of this study was to determine if 1.) morphine (M) acts to prevent the increase in firing evoked by a NS by blocking the effects of either of these two neurotransmitters and 2.) if this effect is a specific narcotic effect. Using the technique of microiontophoresis in conjunction with extracellular recording, we located single units in the MRF in which 1.) neuronal firing was accelerated by a NS: 2.) M blocked this response; and 3.) either ACh or NE mimicked the effect of the NS. Neurons meeting these three criteria were studied further to determined if morphine would also block the response to either of the neurotransmitters and if this was a specific narcotic effect. We found that morphine blocked the increase in neuronal firing evoked by the NS and ACh or the NS and NE in over 50% of the cells meeting the above criteria. Some neurons were found in which both ACh and NE mimicked the NS and M blocked all three responses. This blockade of these neurotransmitters was a specific narcotic effect because it could be reversed by the systematic administration of naloxone. These data lead to the tentative hypothesis that M, acting via an opiate receptor, blocks the increase in neuronal firing evoked by a NS by blocking the postsynaptic effects of either ACh or NE. This may be one of the mechanisms by which morphine acts to produce analgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号