首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
All‐female sperm‐dependent species are particular asexual organisms that must coexist with a closely related sexual host for reproduction. However, demographic advantages of asexual over sexual species that have to produce male individuals could lead both to extinction. The unresolved question of their coexistence still challenges and fascinates evolutionary biologists. As an alternative hypothesis, we propose those asexual organisms are afflicted by a demographic cost analogous to the production of males to prevent exclusion of the host. Previously proposed hypotheses stated that asexual individuals relied on a lower fecundity than sexual females to cope with demographic advantage. In contrast, we propose that both sexual and asexual species display the same number of offspring, but half of asexual individuals imitate the cost of sex by occupying ecological niches but producing no offspring. Simulations of population growth in closed systems under different demographic scenarios revealed that only the presence of nonreproductive individuals in asexual females can result in long‐term coexistence. This hypothesis is supported by the fact that half of the females in some sperm‐dependent organisms did not reproduce clonally.  相似文献   

2.
The maintenance of sexual reproduction is discussed using a model based on the familiar Lotka-Volterra competition equations. Both the equilibrium and the stability conditions that allow a sexual population to resist invasion by a single asexual clone are considered. The equilibrium conditions give results similar to previous models: When the cost of sex, within phenotype niche width, and environmental variance are low, the sexual population coexists with the asexual clone and remains at a high density. However, the asexual clone is never completely excluded. Analysis of the stability conditions shows a different picture: The introduction of an asexual clone considerably reduces the stability of the community. However, owing to its larger total niche width, the sexual population exists partly in a “competitor-free space” where the asexual clone has almost no influence on the outcome of the interactions. Therefore the asexual clone is less stable than the sexual population and has a higher probability of extinction. In contrast, the sexual population does not become extinct, since the extreme phenotypes remain at a stable, though low, density, and the central phenotypes, where stability is low, are recreated every generation through recombination. I therefore conclude that the ecological conditions under which sexual reproduction is favored over asexual reproduction are fairly easily attained and are more general than previous analyses had suggested.  相似文献   

3.
Developmental biology is one of the fastest growing and fascinating research fields in life sciences. Among the wide range of embryonic development, a fundamental difference exists between organisms with sexual or asexual development. Aphids are unusual organisms which display alternative pathways of sexual and asexual development, the orientation of the pathway being determined by environmental conditions. These insects offer an adapted system in which to study developmental plasticity, because a side-by-side comparison of sexual and asexual development can be made in individuals with the same genotype. In this review, we describe the developmental mechanisms that have evolved in aphids for alternative sexual and asexual reproduction. In particular, we discuss how environmental cues orientate the reproductive mode of aphids from signal perception to endocrine regulation, and propose a comparative analysis of sexual and asexual gametogenesis and embryogenesis, which has been possible due to the development of molecular methods. As a result of the recent development of genomic resources in aphids, we expect these species will permit major advances in the study of the genomic basis underlying the choice of developmental fate and multiple reproduction strategies.  相似文献   

4.
Variation in clone structure of fragmenting coral reef sponges   总被引:2,自引:0,他引:2  
Populations of three branching Caribbean demosponge species are composed of clones produced by asexual fragmentation. Dispersal of the fragments before they become established as independent individuals scatters clone members widely and intermixes members of different clones, complicating study of the clone structure of these populations and contrasting with many other sessile clonal organisms. Clone structures of these populations were inferred using a combination of tissue-compatibility relationships and an analysis of variations in morphology and colour. Although tissue compatibility cannot be used for precise identification of sponge clones, in general, patterns of variation in morphological characters influencing fragmentation and patterns of fragment dispersal and recruitment suggest that, in these populations, tissue-compatibility relationships closely reflect clone structure. Conditions that must be met in order to use tissue compatibility for study of sponge clones are discussed, and previous results, from which conflicting conclusions have been drawn, reconciled in this context. Variations among clones in numbers of physiologically independent members and in size and shape of areal extent are discussed in the context of processes that may affect evolution of clonal characters in these populations and in other species that propagate by dispersing asexual fragments.  相似文献   

5.
Levels and origins of clonal diversity in asexual hybrid animals are critical to understanding how they can coexist with their sexual progenitor species. In this study, asexual gynogenetic hybrids between Fundulus diaphanus and Fundulus heteroclitus known from two sites in Nova Scotia (Canada) were characterized using discriminant morphological traits, eight microsatellite loci, and mitochondrial DNA. Fifteen clonal genotypes were uncovered, all bearing the same F. diaphanus maternal haplotye. Each site harboured a different dominant clone along with several rarer clones that all appear to be of recent origin. Unexpectedly, highly introgressed sexually reproducing hybrids (0.25 > q > 0.75) were also detected. Sexual hybrids with maternal ascendance in either species were also found at three other sites in the Atlantic region. Based on a single meristic trait (scale counts), it is shown that asexual clones can be significantly more variable than populations of sexual parental species. Also, species are morphologically more alike when living in sympatry, suggesting that introgression may occur via sexual hybrids. Altogether, these results confirm and refine the available knowledge on this hybrid system, and indicate that hybridization is probably a more widespread phenomenon than suspected, with implications for the phenotypic variability of a widely used model species, F. heteroclitus.  相似文献   

6.
Asexuals are an important test case for theories of why species exist. If asexual clades displayed the same pattern of discrete variation as sexual clades, this would challenge the traditional view that sex is necessary for diversification into species. However, critical evidence has been lacking: all putative examples have involved organisms with recent or ongoing histories of recombination and have relied on visual interpretation of patterns of genetic and phenotypic variation rather than on formal tests of alternative evolutionary scenarios. Here we show that a classic asexual clade, the bdelloid rotifers, has diversified into distinct evolutionary species. Intensive sampling of the genus Rotaria reveals the presence of well-separated genetic clusters indicative of independent evolution. Moreover, combined genetic and morphological analyses reveal divergent selection in feeding morphology, indicative of niche divergence. Some of the morphologically coherent groups experiencing divergent selection contain several genetic clusters, in common with findings of cryptic species in sexual organisms. Our results show that the main causes of speciation in sexual organisms, population isolation and divergent selection, have the same qualitative effects in an asexual clade. The study also demonstrates how combined molecular and morphological analyses can shed new light on the evolutionary nature of species.  相似文献   

7.
Three recent books on the evolutionary biology of aging and sexual reproduction are reviewed, with particular attention focused on the provocative suggestion by Bernstein and Bernstein (1991) that senescence and genetic recombination are related epiphenomena stemming from the universal challenge to life posed by DNA damages and the need for damage repair. Embellishments to these theories on aging and sex are presented that consider two relevant topics neglected or underemphasized in the previous treatments. The first concerns discussion of cytoplasmic genomes (such as mtDNA), which are transmitted asexually and therefore do not abide by the recombinational rules of nuclear genomes; the second considers the varying degrees of cellular and molecular autonomy which distinguish unicellular from multicellular organisms, germ cells from somatic cells, and sexual from asexual genomes. Building on the Bernsteins' suggestions, two routes to immortality for cell lineages appear to be available to life: an asexual strategy (exemplified by some bacteria), whereby cell proliferation outpaces the accumulation of DNA damages, thereby circumventing Muller's ratchet; and a sexual strategy (exemplified by germlines in multicellular organisms), whereby recombinational repair of DNA damages in conjunction with cell proliferation and gametic selection counter the accumulation of nuclear DNA damages. If true, then elements of both the recombinational strategy (nuclear DNA) and replacement strategy (cytoplasmic DNA) may operate simultaneously in the germ-cell lineages of higher organisms, producing at least some gametes that are purged of the DNA damages accumulated during the lifetime of the somatic parent. For multicellular organisms, production of functionally autonomous and genetically screened gametic cells is a necessary and sufficient condition for the continuance of life.  相似文献   

8.
The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within‐lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra‐ and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations.  相似文献   

9.
The parasitoid wasp genus Lysiphlebus (Hymenoptera: Braconidae: Aphidiinae) contains a taxonomically poorly resolved group of both sexual (arrhenotokous) species and asexual (thelytokous) clones. Maximum-parsimony and maximum-likelihood analyses of mitochondrial DNA sequence data from specimens collected across Western Europe showed that asexuality, which does not appear to be caused by the bacterium Wolbachia, is concentrated in two geographically widespread lineages, the older of which diverged from the closest extant sexual taxa approximately 0.5 million years ago. However, the DNA sequences of a nuclear intron (elongation factor—1α) showed no congruence with this pattern, and a much higher frequency of heterozygotes with very high allelic diversity was observed among the asexual females compared to that among females from the sexual species. This pattern is consistent with maternally inherited asexuality coupled with a history of rare sex with members of several closely related sexual populations or species. Our observations reinforce recent arguments that rare sex may be more important for the persistence of otherwise asexual lineages than hitherto appreciated.  相似文献   

10.
Babynin EV 《Tsitologiia》2007,49(3):182-193
Sexual reproduction prevails among eukaryotic organisms. The problem of advantage of sexual reproduction over asexual reproduction remains a subject of not stopping discussions. According to one of the hypotheses, sexual reproduction and homologous recombination which accompanies gamete formation during meiosis has arisen to increase genetic variability and, as consequence, a fitness of organisms. Many researches show that homologous recombination play an important role in reparation of DNA in various groups of organisms irrespective of the way of their reproduction. Involvement of recombination in meiosis, however, is impossible to explain only by DNA repair functions. The hypothesis, that a recombination in the course of sexual process is a source of variability, also is not capable to explain existence of this process well. There is convincing evidence that the homologous recombination in meiosis is necessary for formation of bivalents. A physical connection between homologous chromosomes that is formed by recombination is required for correct chromosome segregation during meiotic division and formation of gametes of full value.  相似文献   

11.
The study of alternative genetic systems and mixed modes of reproduction, whereby sexual and asexual reproduction is combined within the same lifecycle, is of fundamental importance as they may shed light on classical evolutionary issues, such as the paradox of sex. Recently, several such cases were discovered in social insects. A closer examination of these systems has revealed many amazing facts, including the mixed use of asexual and sexual reproduction for the production of new queens and workers, males that can clone themselves and the routine use of incest without deleterious genetic consequences. In addition, in several species, remarkable cases of asexually reproducing socially parasitic worker lineages have been discovered. The study of these unusual systems promises to provide insight into many basic evolutionary questions, including the maintenance of sex, the expression of sexual conflict and kin conflict and the evolution of cheating in asexual lineages.  相似文献   

12.
Understanding why some organisms reproduce by sexual reproduction while others can reproduce asexually remains an important unsolved problem in evolutionary biology. Simple demography suggests that asexuals should outcompete sexually reproducing organisms, because of their higher intrinsic rate of increase. However, the majority of multicellular organisms have sexual reproduction. The widely accepted explanation for this apparent contradiction is that asexual lineages have a higher extinction rate. A number of models have indicated that population size might play a crucial role in the evolution of asexuality. The strength of processes that lead to extinction of asexual species is reduced when population sizes get very large, so that the long‐term advantage of sexual over asexual reproduction may become negligible. Here, we use a comparative approach using scale insects (Coccoidea, Hemiptera) to show that asexuality is indeed more common in species with larger population density and geographic distribution and we also show that asexual species tend to be more polyphagous. We discuss the implication of our findings for previously observed patterns of asexuality in agricultural pests.  相似文献   

13.
I. M. Hastings 《Genetics》1991,129(4):1167-1176
Population geneticists make a distinction between sexual and asexual organisms depending on whether individuals inherit genes from one or two parents. When individual genes are considered, this distinction becomes less satisfactory for multicellular sexual organisms. Individual genes pass through numerous asexual mitotic cell divisions in the germline prior to meiosis and sexual recombination. The processes of mitotic mutation, mitotic crossing over, and mitotic gene conversion create genotypic diversity between diploid cells in the germline. Genes expressed in the germline whose products affect cell viability (such as many "housekeeping" enzymes) may be subjected to natural selection acting on this variability resulting in a non-Mendelian output of gametes. Such genes will be governed by the population genetics of the sexual/asexual life cycle rather than the conventional sexual/Mendelian life cycle. A model is developed to investigate some properties of the sexual/asexual life cycle. When appropriate parameter values were included in the model, it was found that mutation rates per locus per gamete may vary by a factor of up to 100 if selection acts in the germline. Sexual/asexual populations appear able to evolve to a genotype of higher fitness despite intervening genotypes of lower fitness, reducing the problems of underdominance and Wright's adaptive landscape encountered by purely sexual populations. As might be expected this ability is chiefly determined by the number of asexual mitotic cell divisions within the germline. The evolutionary consequences of "housekeeping" loci being governed by the dynamics of the sexual/asexual life cycle are considered.  相似文献   

14.
Almost all eukaryotic organisms undergo sexual recombination at some stage of their life history. However, strictly asexual organisms should have higher per capita rate of reproduction compared with those that have sex, so the latter must convey some advantage which overrides the reproductive benefit of asexuality. For example, sexual reproduction and recombination may play an important role in allowing organisms to evolutionarily ‘keep up’ with parasites. Host–parasite coevolution can operate via negative frequency‐dependent selection whereby parasite genotypes adapt to infect host genotypes as they become locally common. By producing more genetically diverse offspring with unique genotypes, sexual organisms have an advantage over asexual counterparts. Essentially, sexual hosts are more difficult for coevolving parasites to ‘track’ over time. This scenario has been named the “Red Queen hypothesis”. It refers to a passage in Lewis Carroll's ‘Through the Looking Glass’ in which the Red Queen tells Alice: ‘it takes all the running you can do, to keep in the same place’; this statement resembles the negative frequency‐dependent dynamics of host–parasite coevolution.  相似文献   

15.
What advantage do sexually reproducing organisms gain from their mode of reproduction that compensates for their twofold loss in reproductive rate relative to their asexual counterparts? One version of the Red Queen hypothesis suggests that selective pressure from parasites is strongest on the most common genotype in a population, and thus genetically identical clonal lineages are more vulnerable to parasitism over time than genetically diverse sexual lineages. Our surveys of the ectoparasites of an asexual gecko and its two sexual ancestral species show that the sexuals have a higher prevalence, abundance, and mean intensity of mites than asexuals sharing the same habitat. Our experimental data indicate that in one sexual/asexual pair this pattern is at least partly attributable to higher attachment rates of mites to sexuals. Such a difference may occur as a result of exceptionally high susceptibility of the sexuals to mites because of their low genetic diversity (relative to other more-outbred sexual species) and their potentially high stress levels, or as a result of exceptionally low susceptibility of the asexuals to mites because of their high levels of heterozygosity.  相似文献   

16.
Asexual organisms that are descended from ancient asexual lineages defy current thinking on the evolution of sexual reproduction; theoreticians have been anxious to explain away their existence. However, a number of groups of organisms, from ferns to rotifers, have been suggested to be anciently asexual, and favourable evidence is being accumulated. Furthermore, new techniques for assessing claims of ancient asexuality have been proposed. Although ancient asexuals challenge current theories of sex, understanding how they manage to persist will help to explain why most organisms are sexual.  相似文献   

17.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

18.
Cyclically parthenogenetic organisms may have facultative asexual counterparts. Such organisms, including aphids, are therefore interesting models for the study of ecological and genetic interactions between lineages differing in reproductive mode. Earlier studies on aphids have revealed major differences in the genetic outcomes of populations that are possibly resulting mostly either from sexual or from asexual reproduction. Besides, notable gene flow between sexual and asexual derivatives has been suspected, which could lead to the emergence of new asexual lineages. The present study examines the interplay between these lineages and is based on analyses of population structure of individuals that may contribute to the pool of sexual reproductive forms in the host alternating aphid Rhopalosiphum padi. Using a Bayesian assignment method, we first show that the sexual forms of R. padi on mating sites encompass two genetically distinct clusters of individuals in the western part of France. The first cluster included unique genotypes of sexual lineages, while the second cluster included facultatively asexual lineages in numerous copies, the reproductive mode of the two clusters being confirmed by reference clones. Sexual reproductive forms produced by sexual and facultatively asexual lineages are thus admixed at mating sites which gives a large opportunity for the two clusters to mate with each other. Nevertheless, this study also highlights, as previously demonstrated, that the two clusters retained high genetic differentiation. Possible explanations for the inferred limited genetic exchanges are advanced in the discussion, but further dedicated investigations are required to solve this paradox.  相似文献   

19.
Many aphid species exhibit geographical variation in the mode of reproduction that ranges from cyclical parthenogenesis with a sexual phase to obligate parthenogenesis (asexual reproduction). Theoretical studies predict that organisms reproducing asexually should maintain higher allelic diversity per locus but lower genotypic diversity than organisms reproducing sexually. To corroborate this hypothesis, we evaluated genotypic and allelic diversities in the sexual and asexual populations of the pea aphid, Acyrthosiphon pisum (Harris). Microsatellite analysis revealed that populations in central Japan are asexual, whereas populations in northern Japan are obligatorily sexual. No mixed populations were detected in our study sites. Phylogenetic analysis using microsatellite data and mitochondrial cytochrome oxidase subunit I (COI) gene sequences revealed a long history of asexuality in central Japan and negated the possibility of the recent origin of the asexual populations from the sexual populations. Asexual populations exhibited much lower genotypic diversity but higher allelic richness per locus than did sexual populations. Asexual populations consisted of a few predominant clones that were considerably differentiated from one another. Sexual populations on alfalfa, an exotic plant in Japan, were most closely related to asexual populations associated with Vicia sativa L. The alfalfa-associated sexual populations harboured one COI haplotype that was included in the haplotype clade of the asexual populations. Available evidence suggests that the sexuality of the alfalfa-associated populations has recently been restored through the northward migration and colonization of alfalfa by V. sativa- associated lineages. Therefore, our results support the theoretical predictions and provide a new perspective on the origin of sexual populations.  相似文献   

20.
Despite many years of theoretical and experimental work, the explanation for why sex is so common as a reproductive strategy continues to resist understanding. Recent empirical work has addressed key questions in this field, especially regarding rates of mutation accumulation in sexual and asexual organisms, and the roles of negative epistasis and drift as sources of adaptive constraint in asexually reproducing organisms. At the same time, new ideas about the evolution of sexual recombination are being tested, including intriguing suggestions of an important interplay between sex and genetic architecture, which indicate that sex and recombination could have affected their own evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号