首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human pulmonary mast cells (MCs) express tryptases alpha and beta I, and both granule serine proteases are exocytosed during inflammatory events. Recombinant forms of these tryptases were generated for the first time to evaluate their substrate specificities at the biochemical level and then to address their physiologic roles in pulmonary inflammation. Analysis of a tryptase-specific, phage display peptide library revealed that tryptase beta I prefers to cleave peptides with 1 or more Pro residues flanked by 2 positively charged residues. Although recombinant tryptase beta I was unable to activate cultured cells that express different types of protease-activated receptors, the numbers of neutrophils increased >100-fold when enzymatically active tryptase beta I was instilled into the lungs of mice. In contrast, the numbers of lymphocytes and eosinophils in the airspaces did not change significantly. More important, the tryptase beta I-treated mice exhibited normal airway responsiveness. Neutrophils did not extravasate into the lungs of tryptase alpha-treated mice. Thus, this is the first study to demonstrate that the two nearly identical human MC tryptases are functionally distinct in vivo. When MC-deficient W/W(v) mice were given enzymatically active tryptase beta I or its inactive zymogen before pulmonary infection with Klebsiella pneumoniae, tryptase beta I-treated W/W(v) mice had fewer viable bacteria in their lungs relative to zymogen-treated W/W(v) mice. Because neutrophils are required to combat bacterial infections, human tryptase beta I plays a critical role in the antibacterial host defenses of the lung by recruiting neutrophils in a manner that does not alter airway reactivity.  相似文献   

2.
Although it has been shown that mast cell-deficient mice have diminished innate immune responses against bacteria, the most important immunoprotective factors secreted from activated mast cells have not been identified. Mouse mast cell protease 6 is a tetramer-forming tryptase. This serine protease is abundant in the secretory granules and is exocytosed upon bacterial challenge. Here we have described the generation of a mast cell protease-6-null mouse. Our discovery that mice lacking this neutral protease cannot efficiently clear Klebsiella pneumoniae from their peritoneal cavities reveals an essential role for this serine protease, and presumably its human ortholog, in innate immunity.  相似文献   

3.
During infection and tissue damage, virulence factors and alarmins are pro-inflammatory and induce activation of various immune cells including macrophages and mast cells (MCs). Activated MCs instantly release preformed inflammatory mediators, including several proteases. The chymase mouse mast cell protease (MCPT)-4 is thought to be pro-inflammatory, whereas human chymase also degrades pro-inflammatory cytokines, suggesting that chymase instead limits inflammation. Here we explored the contribution of MCPT4 and human chymase to the control of danger-induced inflammation. We found that protein extracts from wild type (WT), carboxypeptidase A3-, and MCPT6-deficient mice and MCs and recombinant human chymase efficiently degrade the Trichinella spiralis virulence factor heat shock protein 70 (Hsp70) as well as endogenous Hsp70. MC-(Wsash)-, serglycin-, NDST2-, and MCPT4-deficient extracts lacked this capacity, indicating that chymase is responsible for the degradation. Chymase, but not MC tryptase, also degraded other alarmins, i.e. biglycan, HMGB1, and IL-33, a degradation that was efficiently blocked by the chymase inhibitor chymostatin. IL-7, IL-22, GM-CSF, and CCL2 were resistant to chymase degradation. MCPT4-deficient conditions ex vivo and in vivo showed no reduction in added Hsp70 and only minor reduction of IL-33. Peritoneal challenge with Hsp70 resulted in increased neutrophil recruitment and TNF-α levels in the MCPT4-deficient mice, whereas IL-6 and CCL2 levels were similar to the levels found in WT mice. The rapid and MC chymase-specific degradation of virulence factors and alarmins may depend on the presence of accessible extended recognition cleavage sites in target substrates and suggests a protective and regulatory role of MC chymase during danger-induced inflammation.  相似文献   

4.
A characteristic feature of tissue resident human mast cells (MCs) is their hTryptase-β-rich cytoplasmic granules. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and we have shown that this tetramer-forming tryptase has beneficial roles in innate immunity but adverse roles in inflammatory disorders like experimental arthritis. Because the key tissue factors that control tryptase expression in MCs have not been identified, we investigated the mechanisms by which fibroblasts mediate the expression and granule accumulation of mMCP-6. Immature mouse bone marrow-derived MCs (mBMMCs) co-cultured with fibroblast-like synoviocytes (FLS) or mouse 3T3 fibroblasts markedly increased their levels of mMCP-6. This effect was caused by an undefined soluble factor whose levels could be increased by exposing FLS to tumor necrosis factor-α or interleukin (IL)-1β. Gene expression profiling of mBMMCs and FLS for receptor·ligand pairs of potential relevance raised the possibility that IL-33 was a sought after fibroblast-derived factor that promotes tryptase expression and granule maturation via its receptor IL1RL1/ST2. MCs lacking IL1RL1 exhibited defective fibroblast-driven tryptase accumulation, whereas recombinant IL-33 induced mMCP-6 mRNA and protein accumulation in wild-type mBMMCs. In agreement with these data, synovial MCs from IL1RL1-null mice exhibited a marked reduction in mMCP-6 expression. IL-33 is the first factor shown to modulate tryptase expression in MCs at the mRNA and protein levels. We therefore have identified a novel pathway by which mesenchymal cells exposed to inflammatory cytokines modulate the phenotype of local MCs to shape their immune responses.  相似文献   

5.
Tryptase is a serine protease found almost exclusively in mast cells. It has trypsin-like specificity, favoring cleavage of substrates with an arginine (or lysine) at the P1 position, and has optimal catalytic activity at neutral pH. Current evidence suggests tryptase beta is the most important form released during mast cell activation in allergic diseases. It is shown to have numerous pro-inflammatory cellular activities in vitro, and in animal models tryptase provokes broncho-constriction and induces a cellular inflammatory infiltrate characteristic of human asthma. Screening of in-house inhibitors of factor Xa (a closely related serine protease) identified beta-amidoester benzamidines as potent inhibitors of recombinant human betaII tryptase. X-ray structure driven template modification and exchange of the benzamidine to optimize potency and pharmacokinetic properties gave selective, potent and orally bioavailable 4-(3-aminomethyl phenyl)piperidinyl-1-amides.  相似文献   

6.
7.
8.
Protease serine member S31 (Prss31)/transmembrane tryptase/tryptase-γ is a mast cell (MC)-restricted protease of unknown function that is retained on the outer leaflet of the plasma membrane when MCs are activated. We determined the nucleotide sequences of the Prss31 gene in different mouse strains and then used a Cre/loxP homologous recombination approach to create a novel Prss31−/− C57BL/6 mouse line. The resulting animals exhibited no obvious developmental abnormality, contained normal numbers of granulated MCs in their tissues, and did not compensate for their loss of the membrane tryptase by increasing their expression of other granule proteases. When Prss31-null MCs were activated with a calcium ionophore or by their high affinity IgE receptors, they degranulated in a pattern similar to that of WT MCs. Prss31-null mice had increased baseline airway reactivity to methacholine but markedly reduced experimental chronic obstructive pulmonary disease and colitis, thereby indicating both beneficial and adverse functional roles for the tryptase. In a cigarette smoke-induced model of chronic obstructive pulmonary disease, WT mice had more pulmonary macrophages, higher histopathology scores, and more fibrosis in their small airways than similarly treated Prss31-null mice. In a dextran sodium sulfate-induced acute colitis model, WT mice lost more weight, had higher histopathology scores, and contained more Cxcl-2 and IL-6 mRNA in their colons than similarly treated Prss31-null mice. The accumulated data raise the possibility that inhibitors of this membrane tryptase may provide additional therapeutic benefit in the treatment of humans with these MC-dependent inflammatory diseases.  相似文献   

9.
We established a diphtheria toxin (DT)-based conditional deletion system using Il4 enhancer elements previously shown to be specific for IL-4 production in mast cells (MCs) or basophils (Mas-TRECK and Bas-TRECK mice). DT treatment of Bas-TRECK mice resulted in specific deletion of basophils, whereas both MCs and basophils were deleted in Mas-TRECK mice. DT-treated Mas-TRECK mice had impaired passive cutaneous anaphylaxis, IgE-mediated passive systemic anaphylaxis, and IgE-mediated chronic allergic inflammation, whereas DT-treated Bas-TRECK mice had impaired IgE-mediated chronic allergic inflammation. Using these mice, we also sought to tease out the role of MCs and basophils in airway hyperresponsiveness (AHR). Although MC deletion resulted in a slight increase in basal Ag-specific IgE levels and significant increases in basal IgE levels, we found that this deletion markedly impaired the AHR effector phase and was accompanied by decreased histamine levels. By contrast, basophil deletion had no effect on the AHR effector phase or on IgE production induced by systemic OVA immunization. Our results, using these newly established Mas-TRECK and Bas-TRECK models, demonstrated an indispensable role for MCs as effector cells in AHR.  相似文献   

10.
11.
12.
Tryptase, a serine protease, is the major protein component in mast cells. In an animal model of asthma, tryptase has been established as an important mediator of inflammation and late airway responses induced by antigen challenge. Human tryptase is notable for its tetrameric structure, requirement of heparin for stability, and resistance to endogenous inhibitors. Human protryptase was expressed as a recombinant protein in Pichia pastoris. The recombinant protein consisted of two forms of protryptase, one containing the entire propeptide and the other containing only the Val-Gly dipeptide at its amino terminus. Isolation of active recombinant tryptase required a two column purification protocol and included a heparin- and dipeptidyl peptidase I-dependent activation step. Purified recombinant tryptase migrated as a tetramer on a gel filtration column and displayed kinetic parameters identical to those of a native tryptase obtained from HMC-1 cells, a human mast cell line. Recombinant and HMC-1 tryptase exhibited comparable sensitivities to an array of protein and low-molecular-weight inhibitors, including one that is highly specific for tryptase (APC-1167). Similarly, the recombinant enzyme cleaved both alpha- and beta-chains of fibrinogen to generate fibrinogen fragments indistinguishable from those generated by HMC-1-derived tryptase. Thus, recombinant tryptase expressed in P. pastoris displays physical and enzymatic properties essentially identical to the native enzyme. This system provides a cost-effective and easy to manipulate expression system that will enable the functional characterization of this unique enzyme.  相似文献   

13.
Airway hyperresponsiveness to a variety of specific and nonspecific stimuli is a cardinal feature of asthma, which affects nearly 10% of the population in industrialized countries. Eosinophilic pulmonary inflammation, eosinophil-derived products, as well as Th2 cytokines IL-13, IL-4, and IL-5, have been associated with the development of airway hyperreactivity (AHR), but the specific immunological basis underlying the development of AHR remains controversial. Herein we show that mice with targeted deletion of IL-13 failed to develop allergen-induced AHR, despite the presence of vigorous Th2-biased, eosinophilic pulmonary inflammation. However, AHR was restored in IL-13(-/-) mice by the administration of recombinant IL-13. Moreover, adoptive transfer of OVA-specific Th2 cells generated from TCR-transgenic IL-13(-/-) mice failed to induce AHR in recipient SCID mice, although such IL-13(-/-) Th2 cells produced high levels of IL-4 and IL-5 and induced significant airway inflammation. These studies definitively demonstrate that IL-13 is necessary and sufficient for the induction of AHR and that eosinophilic airway inflammation in the absence of IL-13 is inadequate for the induction of AHR. Therefore, treatment of human asthma with antagonists of IL-13 may be very effective.  相似文献   

14.
Reactive mastocytosis (RM) in epithelial surfaces is a consistent Th2-associated feature of allergic disease. RM fails to develop in mice lacking leukotriene (LT) C4 synthase (LTC4S), which is required for cysteinyl leukotriene (cys-LT) production. We now report that IL-4, which induces LTC4S expression by mast cells (MCs), requires cys-LTs, the cys-LT type 1 receptor (CysLT1), and Gi proteins to promote MC proliferation. LTD4 (10-1000 nM) enhanced proliferation of human MCs in a CysLT1-dependent, pertussis toxin-sensitive manner. LTD4-induced phosphorylation of ERK required transactivation of c-kit. IL-4-driven comitogenesis was likewise sensitive to pertussis toxin or a CysLT1-selective antagonist and was attenuated by treatment with leukotriene synthesis inhibitors. Mouse MCs lacking LTC4S or CysLT1 showed substantially diminished IL-4-induced comitogenesis. Thus, IL-4 induces proliferation in part by inducing LTC4S and cys-LT generation, which causes CysLT1 to transactivate c-kit in RM.  相似文献   

15.
The potent spasmogenic properties of IL-13 have identified this molecule as a potential regulator of airways hyperreactivity (AHR) in asthma. Although IL-13 is thought to primarily signal through the IL-13Ralpha1-IL-4Ralpha complex, the cellular and molecular components employed by this cytokine to induce AHR in the allergic lung have not been identified. By transferring OVA-specific CD4(+) T cells that were wild type (IL-13(+/+) T cells) or deficient in IL-13 (IL-13(-/-) T cells) to nonsensitized mice that were then challenged with OVA aerosol, we show that T cell-derived IL-13 plays a key role in regulating AHR, mucus hypersecretion, eotaxin production, and eosinophilia in the allergic lung. Moreover, IL-13(+/+) T cells induce these features (except mucus production) of allergic disease independently of the IL-4Ralpha chain. By contrast, IL-13(+/+) T cells did not induce disease in STAT6-deficient mice. This shows that IL-13 employs a novel component of the IL-13 receptor signaling system that involves STAT6, independently of the IL-4Ralpha chain, to modulate pathogenesis. We show that this novel pathway for IL-13 signaling is dependent on T cell activation in the lung and is critically linked to downstream effector pathways regulated by eotaxin and STAT6.  相似文献   

16.
Mesangial cell (MC) proliferation is essential for the pathogenesis and progression of glomerular disease. Using an acute model of mesangial proliferative glomerulonephritis (Thy1 GN), we show that neutralization of interleukin (IL)-10 greatly ameliorated the disease as expressed by both decreased MC expansion and proteinuria. Treatment with the tellurium compound AS101 (ammonium trichloro(dioxoethylene-o,o')tellurate) resulted in favorable effects provided that the compound was administered 24 h before insult, whereas partial effects were obtained when administered after insult. We identified STAT3 as playing a pivotal role in IL-10-induced MC proliferation in vitro and in vivo. IL-10 activates MC STAT3 in vitro as expressed by its phosphorylation and nuclear translocation. The role of STAT3 in MC proliferation induced by IL-10 was deduced from results showing that IL-10-induced proliferation was abrogated if MC transfected with STAT3 antisense oligonucleotides were used or if cells were incubated with inhibitors of STAT3. AS101 deactivates STAT3 in control but not in MC transfected with IL-10 antisense oligonucleotides. Inactivation of STAT3 prevents reduction of MC proliferation by AS101. We further demonstrate the role of STAT3 in the regulation of cell cycle and survival regulatory proteins by AS101 in MC via inhibition of IL-10. IL-10 increased MC expression of Bcl-2 and Bcl-X1 and simultaneously decreased the levels of p27kip1. These survival factors were decreased by AS101 in a STAT3- and IL-10-dependent manner, whereas p27kip1 was similarly increased. In Thy1 GN, phosphorylated STAT3 in glomerular MC peaked at day 6 and correlated with MC expansion. Neutralization of IL-10 or its inhibition by AS101 abolished phosphorylation of STAT3. This effect positively correlated with amelioration of the disease. These in vitro and in vivo studies indicate that the autocrine MC growth factor IL-10 induces MC proliferation via STAT3. We suggest that IL-10 or its downstream target STAT3 might be therapeutic targets for kidney diseases induced by mesangial proliferation.  相似文献   

17.
18.
Mast cells (MC) have been implicated in both normal and pathological angiogenesis, such as that in chronic inflammatory diseases and tumors. This assumption is partially supported by the close structural association between MC and blood vessels and the recruitment of these cells during tumor growth. MC release a number of angiogenic factors among which tryptase, a serine protease stored in MC granules, is one of the most active. In this study, we correlate the extent of angiogenesis with the number of tryptase-reactive MC in tissue fragments from pterygium and normal bulbar conjunctiva investigated by immunohistochemistry, using two murine monoclonal antibodies against the endothelial cell marker CD31 and the MC marker tryptase. Angiogenesis, measured as microvessel density, was highly correlated with MC tryptase-positive cell count in pterygium tissues. These results suggest that the characteristic neovascularization observed in pterygium may be sustained, at least in part, by MC angiogenic mediators, in particular tryptase.  相似文献   

19.
AIDS patients often contain HIV-1-infected mast cells (MCs)/basophils in their peripheral blood, and in vivo-differentiated MCs/basophils have been isolated from the blood of asthma patients that are HIV-1 susceptible ex vivo due to their surface expression of CD4 and varied chemokine receptors. Because IL-16 is a ligand for CD4 and/or an undefined CD4-associated protein, the ability of this multifunctional cytokine to regulate the development of human MCs/basophils from nongranulated progenitors residing in cord or peripheral blood was evaluated. After 3 wk of culture in the presence of c-kit ligand, IL-16 induced the progenitors residing in the blood of normal individuals to increase their expression of chymase and tryptase about 20-fold. As assessed immunohistochemically, >80% of these tryptase(+) and/or chymase(+) cells expressed CD4. The resulting cells responded to IL-16 in an in vitro chemotaxis assay, and this biologic response could be blocked by anti-IL-16 and anti-CD4 Abs as well as by a competitive peptide inhibitor corresponding to a sequence in the C-terminal domain of IL-16. The additional finding that IL-16 induces calcium mobilization in the HMC-1 cell line indicates that IL-16 acts directly on MCs and their committed progenitors. IL-16-treated MCs/basophils also are less susceptible to infection by an M/R5-tropic strain of HIV-1. Thus, IL-16 regulates MCs/basophils at a number of levels, including their vulnerability to retroviral infection.  相似文献   

20.
Mice homozygous for the STAT4-null mutation were sensitized to cockroach Ag, challenged intratracheally 21 days later, and compared with STAT4-competent allergic mice. The STAT4(-/-) mice showed significant decreases in airway hyperreactivity (AHR) and peribronchial eosinophils compared with wild-type controls. In addition, pulmonary levels of chemokines were decreased in the STAT4(-/-) mice, including CC chemokine ligand (CCL)5, CCL6, CCL11, and CCL17. However, levels of Th2-type cytokines, such as IL-4 and IL-13, as well as serum IgE levels were similar in the two groups. Transfer of splenic lymphocytes from sensitized wild-type mice into sensitized STAT4(-/-) mice did not restore AHR in the mutant mice. Furthermore, chemokine production and peribronchial eosinophilia were not restored during the cellular transfer experiments. Thus, it appears that STAT4 expression contributes to a type 2 process such as allergen-induced chemokine production and AHR. In additional studies, competent allergic mice were treated with anti-IL-12 locally in the airways at the time of allergen rechallenge. These latter studies also demonstrated a decrease in AHR. Altogether, these data suggest that STAT4-mediated pathways play a role locally within the airway for the exacerbation of the allergen-induced responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号