首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
Plants utilize isoprene emission as a thermotolerance mechanism   总被引:1,自引:0,他引:1  
Isoprene is a volatile compound emitted from leaves of many plant species in large quantities, which has an impact on atmospheric chemistry due to its massive global emission rate (5 x 10(14) carbon g year(-1)) and its high reactivity with the OH radical, resulting in an increase in the half-life of methane. Isoprene emission is strongly induced by the increase in isoprene synthase activity in plastids at high temperature in the day time, which is regulated at its gene expression level in leaves, while the physiological meaning of isoprene emission for plants has not been clearly demonstrated. In this study, we have functionally overexpressed Populus alba isoprene synthase in Arabidopsis to observe isoprene emission from transgenic plants. A striking difference was observed when both transgenic and wild-type plants were treated with heat at 60 degrees C for 2.5 h, i.e. transformants revealed clear heat tolerance compared with the wild type. High isoprene emission and a decrease in the leaf surface temperature were observed in transgenic plants under heat stress treatment. In contrast, neither strong light nor drought treatments showed an apparent difference. These data suggest that isoprene emission plays a crucial role in a heat protection mechanism in plants.  相似文献   

4.
Monson RK  Fall R 《Plant physiology》1989,90(1):267-274
Isoprene emission rates from quaking aspen (Populus tremuloides Michx.) leaves were measured simultaneously with photosynthesis rate, stomatal conductance, and intercellular CO2 partial pressure. Isoprene emission required the presence of CO2 or O2, but not both. The light response of isoprene emission rate paralleled that of photosynthesis. Isoprene emission was inhibited by decreasing ambient O2 from 21% to 2%, only when there was oxygen insensitive photosynthesis. Mannose (10 millimolar) fed through cut stems resulted in strong inhibition of isoprene emission rate and is interpreted as evidence that isoprene biosynthesis requires either the export of triose phosphates from the chloroplast, or the continued synthesis of ATP. Light response experiments suggest that photosynthetically generated reductant or ATP is required for isoprene biosynthesis. Isoprene biosynthesis and emission are not directly linked to glycolate production through photorespiration, contrary to previous reports. Isoprene emission rate was inhibited by above-ambient CO2 partial pressures (640 microbar outside and 425 microbar inside the leaf). The inhibition was not due to stomatal closure. This was established by varying ambient humidity at normal and elevated CO2 partial pressures to measure isoprene emission rates over a range of stomatal conductances. Isoprene emission rates were inhibited at elevated CO2 despite no change in stomatal conductance. Addition of abscisic acid to the transpiration stream dramatically inhibited stomatal conductance and photosynthesis rate, with a slight increase in isoprene emission rate. Thus, isoprene emission is independent of stomatal conductance, and may occur through the cuticle. Temperature had an influence on isoprene emission rate, with the Q10 being 1.8 to 2.4 between 35 and 45°C. At these high temperatures the amount of carbon lost through isoprene emission was between 2.5 and 8% of that assimilated through photosynthesis. This represents a significant carbon cost that should be taken into account in determining midsummer carbon budgets for plants that are isoprene emitters.  相似文献   

5.
Isoprene basal emission (the emission of isoprene from leaves exposed to a light intensity of 1000 µmol m?2 s?1 and maintained at a temperature of 30 °C) was measured in Phragmites australis plants growing under elevated CO2 in the Bossoleto CO2 spring at Rapolano Terme, Italy, and under ambient CO2 at a nearby control site. Gas exchange and biochemical measurements were concurrently taken. Isoprene emission was lower in the plants growing at elevated CO2 than in those growing at ambient CO2. Isoprene emission and isoprene synthase activity (IsoS) were very low in plants growing at the bottom of the spring under very rich CO2 and increased at increasing distance from the spring (and decreasing CO2 concentration). Distance from the spring did not significantly affect photosynthesis making it therefore unlikely that there is carbon limitation to isoprene formation. The isoprene emission rate was very quickly reduced after rapid switches from elevated to ambient CO2 in the gas‐exchange cuvette, whereas it increased when switching from ambient to elevated CO2. The rapidity of the response may be consistent with post‐translational modifications of enzymes in the biosynthetic pathway of isoprene formation. Reduction of IsoS activity is interpreted as a long‐term response. Basal emission of isoprene was not constant over the day but showed a diurnal course opposite to photosynthesis, with a peak during the hottest hours of the day, independent of stomatal conductance and probably dependent on external air temperature or temporary reduction of CO2 concentration. The present experiments show that basal emission rate of isoprene is likely to be reduced under future elevated CO2 levels and allow improvement in the modelling of future isoprene emission rates.  相似文献   

6.
Kudzu (Pueraria lobata (Willd) Ohwi.) is a vine which forms large, monospecific stands in disturbed areas of the southeastern United States. Kudzu also emits isoprene, a hydrocarbon which can significantly affect atmospheric chemistry including reactions leading to tropospheric ozone. We have studied physiological aspects of isoprene emission from kudzu so the ecological consequences of isoprene emission can be better understood. We examined: (a) the development of isoprene emission as leaves developed, (b) the interaction between photon flux density and temperature effects on isoprene emission, (c) isoprene emission during and after water stress, and (d) the induction of isoprene emission from leaves grown at low temperature by water stress or elevated temperature. Isoprene emission under standard conditions of 1000 mol photons·m-2·s-1 and 30°C developed only after the leaf had reached full expansion, and was not complete until up to two weeks past the point of full expansion of the leaf. The effect of temperature on isoprene emission was much greater than found for other species, with a 10°C increase in temperature causing a eight-fold increase in the rate of isoprene emission. Isoprene emission from kudzu was stimulated by increases in photon flux density up to 3000 mol photons·m-2·s-1. In contrast, photosynthesis of kudzu was saturated at less than 1000 mol·m-2·s-1 photon flux density and was reduced at high temperature, so that up to 20% of the carbon fixed in photosynthesis was reemitted as isoprene gas at 1000 mol photons·m-2·s-1 and 35°C. Withholding water caused photosynthesis to decline nearly to zero after several days but had a much smaller effect on isoprene emission. Following the relief of water stress, photosynthesis recovered to the prestress level but isoprene emission increased to about five times the prestress rate. At 1000 mol photons·m-2·s-1 and 35°C as much as 67% of the carbon fixed in photosynthesis was reemitted as isoprene eight days after water stress. Leaves grown at less than 20°C did not make isoprene until an inductive treatment was given. Inductive treatments included growth at 24°C, leaf temperature of 30°C for 5 h, or witholding water from plants. With the new information on temperature and water stress effects on isoprene emission, we speculate that isoprene emission may help plants cope with stressful conditions.  相似文献   

7.
Isoprene is a highly reactive gas, and is emitted in such large quantities from the biosphere that it substantially affects the oxidizing potential of the atmosphere. Relatively little is known about the control of isoprene emission at the molecular level. Using transgenic tobacco lines harbouring a poplar isoprene synthase gene, we examined control of isoprene emission. Isoprene synthase required chloroplastic localization for catalytic activity, and isoprene was produced via the methyl erythritol (MEP) pathway from recently assimilated carbon. Emission patterns in transgenic tobacco plants were remarkably similar to naturally emitting plants under a wide variety of conditions. Emissions correlated with photosynthetic rates in developing and mature leaves, and with the amount of isoprene synthase protein in mature leaves. Isoprene synthase protein levels did not change under short-term increase in heat/light, despite an increase in emissions under these conditions. A robust circadian pattern could be observed in emissions from long-day plants. The data support the idea that substrate supply and changes in enzyme kinetics (rather than changes in isoprene synthase levels or post-translational regulation of activity) are the primary controls on isoprene emission in mature transgenic tobacco leaves.  相似文献   

8.
9.
Abstract: The influence of prolonged water limitation on leaf gas exchange, isoprene emission, isoprene synthase activities and intercellular isoprene concentrations was investigated under standard conditions (30 °C leaf temperature and 1000 μmol photons m-2 s-1 PPFD) in greenhouse experiments with five-year-old pubescent oak ( Quercus pubescens Willd.) and four-year-old pedunculate oak ( Quercus robur L.) saplings. Net assimilation rates proved to be highly sensitive to moderate drought in both oak species, and were virtually zero at water potentials (Ψpd) below - 1.3 MPa in Q. robur and below - 2.5 MPa in Q. pubescens . The response of stomatal conductance to water stress was slightly less distinct. Isoprene emission was much more resistant to drought and declined significantly only at Ψpd below - 2 MPa in Q. robur and below - 3.5 MPa in Q. pubescens . Even during the most severe water stress, isoprene emission of drought-stressed saplings was still approximately one-third of the control in Q. robur and one-fifth in Q. pubescens . Isoprene synthase activities were virtually unaffected by drought stress. Re-watering led to partial recovery of leaf gas exchange and isoprene emission. Intercellular isoprene concentrations were remarkably enhanced in water-limited saplings of both oak species during the first half of the respective drought periods with maximum mean values up to ca. 16 μl l-1 isoprene for Q. pubescens and ca. 11 μl l-1 isoprene for pedunculate oak, supporting the hypothesis that isoprene serves as a short-term thermoprotective agent in isoprene-emitting plant species.  相似文献   

10.
Isoprene emission from plants represents one of the principal biospheric controls over the oxidative capacity of the continental troposphere. In the study reported here, the seasonal pattern of isoprene emission, and its underlying determinants, were studied for aspen trees growing in the Rocky Mountains of Colorado. The springtime onset of isoprene emission was delayed for up to 4 weeks following leaf emergence, despite the presence of positive net photosynthesis rates. Maximum isoprene emission rates were reached approximately 6 weeks following leaf emergence. During this initial developmental phase, isoprene emission rates were negatively correlated with leaf nitrogen concentrations. During the autumnal decline in isoprene emission, rates were positively correlated with leaf nitrogen concentration. Given past studies that demonstrate a correlation between leaf nitrogen concentration and isoprene emission rate, we conclude that factors other than the amount of leaf nitrogen determine the early-season initiation of isoprene emission. The late-season decline in isoprene emission rate is interpreted as due to the autumnal breakdown of metabolic machinery and loss of leaf nitrogen. In potted aspen trees, leaves that emerged in February and developed under cool, springtime temperatures did not emit isoprene until 23 days after leaf emergence. Leaves that emrged in July and developed in hot, midsummer temperatures emitted isoprene within 6 days. Leaves that had emerged during the cool spring, and had grown for several weeks without emitting isoprene, could be induced to emit isoprene within 2 h of exposure to 32°C. Continued exposure to warm temperatures resulted in a progressive increase in the isoprene emission rate. Thus, temperature appears to be an important determinant of the early season induction of isoprene emission. The seasonal pattern of isoprene emission was examined in trees growing along an elevational gradient in the Colorado Front Range (1829–2896 m). Trees at different elevations exhibited staggered patterns of bud-break and initiation of photosynthesis and isoprene emission in concert with the staggered onset of warm, springtime temperatures. The springtime induction of isoprene emission could be predicted at each of the three sites as the time after bud break required for cumulative temperatures above 0°C to reach approximately 400 degree days. Seasonal temperature acclimation of isoprene emission rate and photosynthesis rate was not observed. The temperature dependence of isoprene emission rate between 20 and 35°C could be accurately predicted during spring and summer using a single algorithm that describes the Arrhenius relationship of enzyme activity. From these results, it is concluded that the early season pattern of isoprene emission is controlled by prevailing temperature and its interaction with developmental processes. The late-season pattern is determined by controls over leaf nitrogen concentration, especially the depletion of leaf nitrogen during senescence. Following early-season induction, isoprene emission rates correlate with photosynthesis rates. During the season there is little acclimation to temperature, so that seasonal modeling simplifies to a single temperature-response algorithm.  相似文献   

11.
Isoprene increases thermotolerance of fosmidomycin-fed leaves   总被引:24,自引:0,他引:24  
Sharkey TD  Chen X  Yeh S 《Plant physiology》2001,125(4):2001-2006
Isoprene is synthesized and emitted in large amounts by a number of plant species, especially oak (Quercus sp.) and aspen (Populus sp.) trees. It has been suggested that isoprene improves thermotolerance by helping photosynthesis cope with high temperature. However, the evidence for the thermotolerance hypothesis is indirect and one of three methods used to support this hypothesis has recently been called into question. More direct evidence required new methods of controlling endogenous isoprene. An inhibitor of the deoxyxylulose 5-phosphate pathway, the alternative pathway to the mevalonic acid pathway and the pathway by which isoprene is made, is now available. Fosmidomycin eliminates isoprene emission without affecting photosynthesis for several hours after feeding to detached leaves. Photosynthesis of fosmidomycin-fed leaves recovered less following a 2-min high-temperature treatment at 46 degrees C than did photosynthesis of leaves fed water or fosmidomycin-fed leaves in air supplemented with isoprene. Photosynthesis of Phaseolus vulgaris leaves, which do not make isoprene, exhibited increased thermotolerance when isoprene was supplied in the airstream flowing over the leaf. Other short-chain alkenes also improved thermotolerance, whereas alkanes reduced thermotolerance. It is concluded that thermotolerance of photosynthesis is a substantial benefit to plants that make isoprene and that this benefit explains why plants make isoprene. The effect may be a general hydrocarbon effect and related to the double bonds in the isoprene molecule.  相似文献   

12.
Isoprene is the primary biogenic hydrocarbon emitted from temperate deciduous forest ecosystems. The effects of varying photon flux density (PFD) and nitrogen growth regimes on rates of isoprene emission and net photosynthesis in potted aspen and white oak trees are reported. In both aspen and oak trees, whether rates were expressed on a leaf area or dry mass basis, (1) growth at higher PFD resulted in significantly higher rates of isoprene emission, than growth at lower PFD, (2) there is a significant positive relationship between isoprene emission rate and leaf nitrogen concentration in both sun and shade trees, and (3) there is a significant positive correlation between isoprene emission rate and photosynthetic rate in both sun and shade trees. The greater capacity for isoprene emission in sun leaves was due to both higher leaf mass per unit area and differences in the biochemical and/or physiological properties that influence isoprene emission. Positive correlations between isoprene emission rate and leaf nitrogen concentration support the existence of mechanisms that link leaf nitrogen status to isoprene synthase activity. Positive correlations between isoprene emission rate and photosynthesis rate support previous hypotheses that isoprene emission plays a role in protecting photosynthetic mechanisms during stress.  相似文献   

13.
The stable carbon isotope composition of isoprene emitted from leaves of red oak (Quercus rubra L.) was measured. Isoprene was depleted in 13C relative to carbon recently fixed by photosynthesis. The difference in isotope composition between recently fixed carbon and emitted isoprene was independent of the isotopic composition of the source CO2. β-Carotene, an isoprenoid plant constituent, was depleted in 13C relative to whole leaf carbon to the same degree as isoprene, but fatty acids were more depleted. Isoprene emitted from leaves fed abscisic acid was much less depleted in 13C than was isoprene emitted from unstressed leaves. We conclude that isoprene is made from an isoprenoid precursor that is derived from acetyl-CoA made from recent photosynthate. The carbon isotope composition of isoprene in the atmosphere is likely to be slightly more negative (less 13C) than C3 plant material but when plants are stressed the isotopic composition could vary.  相似文献   

14.
15.
Isoprene is emitted from the leaves of many plants in a light‐dependent and temperature‐sensitive manner. Plants lose a large fraction of photo‐assimilated carbon as isoprene but may benefit from improved recovery of photosynthesis following high‐temperature episodes. The capacity for isoprene emission of plants in natural conditions (assessed as the rate of isoprene emission under standard conditions) varies with weather. Temperature‐controlled greenhouses were used to study the role of temperature and light in influencing the capacity of oak leaves for isoprene synthesis. A comparison was made between the capacity for isoprene emission and the accumulation of other compounds suggested to increase thermotolerance of photosynthesis under two growth temperatures and two growth light intensities. It was found that the capacity for isoprene emission was increased by high temperature or high light. Xanthophyll cycle intermediates increased in high light, but not in high temperature, and the chloroplast small heat‐shock protein was not expressed in any of the growth conditions. Thus, of the three thermotolerance‐enhancing compounds studied, isoprene was the only one induced by the temperature used in this study.  相似文献   

16.
Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat‐stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat‐stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.  相似文献   

17.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

18.
Affek HP  Yakir D 《Plant physiology》2003,131(4):1727-1736
Isoprene emission from leaves is dynamically coupled to photosynthesis through the use of primary and recent photosynthate in the chloroplast. However, natural abundance carbon isotope composition (delta(13)C) measurements in myrtle (Myrtus communis), buckthorn (Rhamnus alaternus), and velvet bean (Mucuna pruriens) showed that only 72% to 91% of the variations in the delta(13)C values of fixed carbon were reflected in the delta(13)C values of concurrently emitted isoprene. The results indicated that 9% to 28% carbon was contributed from alternative, slow turnover, carbon source(s). This contribution increased when photosynthesis was inhibited by CO(2)-free air. The observed variations in the delta(13)C of isoprene under ambient and CO(2)-free air were consistent with contributions to isoprene synthesis in the chloroplast from pyruvate associated with cytosolic Glc metabolism. Irrespective of alternative carbon source(s), isoprene was depleted in (13)C relative to mean photosynthetically fixed carbon by 4 per thousand to 11 per thousand. Variable (13)C discrimination, its increase by partially inhibiting isoprene synthesis with fosmidomicin, and the associated accumulation of pyruvate suggested that the main isotopic discrimination step was the deoxyxylulose-5-phosphate synthase reaction.  相似文献   

19.
Loreto F  Delfine S 《Plant physiology》2000,123(4):1605-1610
Eucalyptus spp. are among the highest isoprene emitting plants. In the Mediterranean area these plants are often cultivated along the seashore and cope with recurrent salt stress. Transient salinity may severely but reversibly reduce photosynthesis and stomatal conductance of Eucalyptus globulus leaves but the effect on isoprene emission is not significant. When the stress is relieved, a burst of isoprene emission occurs, simultaneously with the recovery of photosynthetic performance. Later on, photosynthesis, stomatal conductance, and isoprene emission decay, probably because of the onset of leaf senescence. Isoprene emission is not remarkably affected by the stress at different light intensities, CO(2) concentrations, and leaf temperatures. When CO(2) was removed and O(2) was lowered to inhibit both photosynthesis and photorespiration, we found that the residual emission is actually higher in salt-stressed leaves than in controls. This stimulation is particularly evident at high-light intensities and high temperatures. The maximum emission occurs at 40 degrees C in both salt-stressed and control leaves sampled in ambient air and in control leaves sampled in CO(2)-free and low-O(2) air. However, the maximum emission occurs at 45 degrees C in salt-stressed leaves sampled in CO(2)-free and low-O(2) air. Our results suggest the activation of alternative non-photosynthetic pathways of isoprene synthesis in salt-stressed leaves and perhaps in general in leaves exposed to stress conditions. The temperature dependence indicates that this alternative synthesis is also under enzymatic control. If this alternative synthesis still occurs in the chloroplasts, it may involve a thylakoid-bound isoprene synthase.  相似文献   

20.
Emission of hydrocarbons by trees has a crucial role in the oxidizing potential of the atmosphere. In particular, isoprene oxidation leads to the formation of tropospheric ozone and other secondary pollutants. It is expected that changes in the composition of the atmosphere will influence the emission rate of isoprene, which may in turn feedback on the accumulation of pollutants and greenhouse gases. We investigated the isoprene synthase (ISPS) gene expression and the ISPS protein levels in aspen trees exposed to elevated ozone (O(3)) and/or elevated carbon dioxide (CO(2)) in field-grown trees at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site. Elevated O(3) reduced ISPS mRNA and the amount of ISPS protein in aspen leaves, whereas elevated CO(2) had no significant effect. Aspen clones with different O(3) sensitivity showed different levels of inhibition under elevated O(3) conditions. The drop in ISPS protein levels induced a drop in the isoprene emission rate under elevated O(3). However, the data indicated that other mechanisms also contributed to the observed strong inhibition of isoprene emission under elevated O(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号