首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium vivax merozoite surface protein 1 (PvMSP1) is believed to be important in erythrocyte invasion. However, the detailed mechanism of PvMSP1-mediated invasion has been unclear. We demonstrate that the C-terminal 19 kDa domain (PvMSP119) of PvMSP1, the 42-kDa fragment of PvMSP1 is further cleaved to a 33 kDa N-terminal polypeptide and a 19 kDa C-terminal fragment in a secondary processing step, is a critical domain in the binding between parasite ligand and erythrocyte receptor. Also, its cytoadherence was successfully blocked by naturally acquired immunity, was partially sensitive to neuraminidase and trypsin. When expressed separately epidermal growth factor (EGF)-like motifs 1 and 2, subunits of the PvMSP119, mediated 64% and 66% of the erythrocyte-binding activity, respectively, relative to their expression together as a single intact ligand domain. These results suggest that the EGF-like motifs 1 and 2 of PvMSP119 function as a core-binding portion in the attachment of PvMSP1 to erythrocytes.  相似文献   

2.
3.
The properties of the insulin-like growth factor-binding proteins (IGFBP-1 to 6) are not limited to modulation of IGF actions. IGFBP-1, which shares an Arg-Gly-Asp (RGD) motif in its C-terminal domain, modulates cell motility by binding to integrin alpha5beta1. The cross-talks between integrins and growth factor receptor signalling pathways are extensively documented, particularly in the case of the epidermal growth factor receptor (EGFR). However, whether IGFBP-1 can modulate growth factor signalling through its interaction with integrin alpha5beta1 has not yet been studied. As EGF is involved in the decidualisation of endometrial stromal cells (ESCs) and as decidualised ESCs are a source of IGFBP-1, we investigated if IGFBP-1 can modulate EGF effects on ESCs. RGD- and IGF-independent inhibition of EGF mitogenic activity and EGFR signalling by IGFBP-1 were demonstrated in ESC primary cultures, A431, cells and in mouse fibroblasts lacking IGF receptors.  相似文献   

4.
Insulin-like growth factor binding protein-3 (IGFBP-3) inhibits the replication and promotes apoptosis in various cell lines in an IGF-independent manner. We utilized a yeast two-hybrid system to identify binding partners for IGFBP-3 in a mouse embryo cDNA library. A partial cDNA encoding mouse latent transforming growth factor beta (TGF-) binding protein-1 (LTBP-1) was identified. This cDNA encoded a mouse LTBP-1 mRNA fragment corresponding to amino acid residues 1160–1712. Analysis of C-terminal deleted mutants indicated that the IGFBP-3 interacting domain resides in the 552 residue C-terminal fragment encoding amino acids 831–1383. The interaction of IGFBP-3 with recombinant human LTBP-1 immobilized on nitrocellulose was also demonstrated. Neither binding of IGF-I to IGFBP-3 nor binding of latency associated protein (LAP) with LTBP-1 inhibited the interaction of IGFBP-3 with LTBP-1. Furthermore the large latent complex, 125I-TGF-/LAP/LTBP-1 was able to bind to immobilized IGFBP-3. These data demonstrate that IGFBP-3 can bind to LTBP-1 and provide a potential mechanism whereby IGFBP-3 can interact with the TGF- system.  相似文献   

5.
The quaternary structure and dynamics of phage lambda repressor are investigated in solution by 1H-NMR methods. lambda repressor contains two domains separable by proteolysis: an N-terminal domain that mediates sequence-specific DNA-A binding, and a C-terminal domain that contains strong dimer and higher-order contacts. The active species in operator recognition is a dimer. Although the crystal structure of an N-terminal fragment has been determined, the intact protein has not been crystallized, and there is little evidence concerning its structure. 1H-NMR data indicate that the N-terminal domain is only loosely tethered to the C-terminal domain, and that its tertiary structure is unperturbed by proteolysis of the "linker" polypeptide. It is further shown that in the intact repressor structure a quaternary interaction occurs between N-terminal domains. This domain-domain interaction is similar to the dimer contact observed in the crystal structure of the N-terminal fragment and involves the hydrophobic packing of symmetry-related helices (helix 5). In the intact structure this interaction is disrupted by the single amino-acid substitution, Ile84----Ser, which reduces operator affinity at least 100-fold. We conclude that quaternary interactions between N-terminal domains function to appropriately orient the DNA-binding surface with respect to successive major grooves of B-DNA.  相似文献   

6.
Insulin-like growth factor-binding protein-2 (IGFBP-2) is the largest member of a family of six proteins (IGFBP-1 to 6) that bind insulin-like growth factors I and II (IGF-I/II) with high affinity. In addition to regulating IGF actions, IGFBPs have IGF-independent functions. The C-terminal domains of IGFBPs contribute to high-affinity IGF binding, and confer binding specificity and have overlapping but variable interactions with many other molecules. Using nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structure of the C-terminal domain of IGFBP-2 (C-BP-2) and analysed its backbone dynamics based on 15N relaxation parameters. C-BP-2 has a thyroglobulin type 1 fold consisting of an alpha-helix, a three-stranded anti-parallel beta-sheet and three flexible loops. Compared to C-BP-6 and C-BP-1, structural differences that may affect IGF binding and underlie other functional differences were found. C-BP-2 has a longer disordered loop I, and an extended C-terminal tail, which is unstructured and very mobile. The length of the helix is identical with that of C-BP-6 but shorter than that of C-BP-1. Reduced spectral density mapping analysis showed that C-BP-2 possesses significant rapid motion in the loops and termini, and may undergo slower conformational or chemical exchange in the structured core and loop II. An RGD motif is located in a solvent-exposed turn. A pH-dependent heparin-binding site on C-BP-2 has been identified. Protonation of two histidine residues, His271 and His228, seems to be important for this binding, which occurs at slightly acidic pH (6.0) and is more significant at pH 5.5, but is largely suppressed at pH 7.4. Possible preferential binding of IGFBP-2 and its C- domain fragments to glycosaminoglycans in the acidic extracellular matrix (ECM) of tumours may be related to their roles in cancer.  相似文献   

7.
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.  相似文献   

8.
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.  相似文献   

9.
Glutaminase of Micrococcus luteus K-3 (intact glutaminase; 48kDa) is digested to a C-terminally truncated fragment (glutaminase fragment; 42kDa) that shows higher salt tolerance than that of the intact glutaminase. The crystal structure of the glutaminase fragment was determined at 2.4A resolution using multiple-wavelength anomalous dispersion (MAD). The glutaminase fragment is composed of N-terminal and C-terminal domains, and a putative catalytic serine-lysine dyad (S64 and K67) is located in a cleft of the N-terminal domain. Mutations of the S64 or K67 residues abolished the enzyme activity. The N-terminal domain has abundant glutamic acid residues on its surface, which may explain its salt-tolerant mechanism. A diffraction analysis of the intact glutaminase crystals (a twinning fraction of 0.43) located the glutaminase fragment in the unit cell but failed to turn up clear densities for the missing C-terminal portion of the molecule.  相似文献   

10.
Abstract

The quaternary structure and dynamics of phage λ repressor are investigated in solution by 1H-NMR methods. λ repressor contains two domains separable by proteolysis: an N-terminal domain that mediates sequence-specific DNA-A binding, and a C-terminal domain that contains strong dimer and higher-order contacts. The active species in operator recognition is a dimer. Although the crystal structure of an N-terminal fragment has been determined, the intact protein has not been crystallized, and there is little evidence concerning its structure. 1H-NMR data indicate that the N-terminal domain is only loosely tethered to the C-terminal domain, and that its tertiary structure is unperturbed by proteolysis of the “linker” polypeptide. It is further shown that in the intact repressor structure a quaternary interaction occurs between N-terminal domains. This domain-domain interaction is similar to the dimer contact observed in the crystal structure of the N-terminal fragment and involves the hydrophobic packing of symmetry-related helices (helix 5). In the intact structure this interaction is disrupted by the single amino-acid substitution, Ile84→Ser, which reduces operator affinity at least 100-fold. We conclude that quaternary interactions between N-terminal domains function to appropriately orient the DNA-binding surface with respect to successive major grooves of B-DNA.  相似文献   

11.
Rat DNA polymerase beta (beta-pol) is a 39-kDa protein organized in two tightly folded domains, 8-kDa N-terminal and 31-kDa C-terminal domains, connected by a short protease-sensitive region. The 8-kDa domain contributes template binding to the intact protein, and we now report that the 31-kDa C-terminal domain contributes catalytic activity. Our results show that this domain as a purified proteolytic fragment conducts DNA synthesis under appropriate conditions but the kcat is lower and primer extension properties are different from those of the intact enzyme. A proteolytic truncation of the 31-kDa catalytic domain fragment, to remove a 60-residue segment from the NH2-terminal end, results in nearly complete loss of activity, suggesting the importance of this segment. Overall, these results indicate that the domains of beta-pol have distinct functional roles, template binding and nucleotidyltransferase, respectively; yet, the intact protein is more active for each function than the isolated individual domain fragment.  相似文献   

12.
Apolipoprotein (apo) E contains two structural domains, a 22-kDa (amino acids 1-191) N-terminal domain and a 10-kDa (amino acids 223-299) C-terminal domain. To better understand apoE-lipid interactions on lipoprotein surfaces, we determined the thermodynamic parameters for binding of apoE4 and its 22- and 10-kDa fragments to triolein-egg phosphatidylcholine emulsions using a centrifugation assay and titration calorimetry. In both large (120 nm) and small (35 nm) emulsion particles, the binding affinities decreased in the order 10-kDa fragment approximately 34-kDa intact apoE4 > 22-kDa fragment, whereas the maximal binding capacity of intact apoE4 was much larger than those of the 22- and 10-kDa fragments. These results suggest that at maximal binding, the binding behavior of intact apoE4 is different from that of each fragment and that the N-terminal domain of intact apoE4 does not contact lipid. Isothermal titration calorimetry measurements showed that apoE binding to emulsions was an exothermic process. Binding to large particles is enthalpically driven, and binding to small particles is entropically driven. At a low surface concentration of protein, the binding enthalpy of intact apoE4 (-69 kcal/mol) was approximately equal to the sum of the enthalpies for the 22- and 10-kDa fragments, indicating that both the 22- and 10-kDa fragments interact with lipids. In a saturated condition, however, the binding enthalpy of intact apoE4 (-39 kcal/mol) was less exothermic and rather similar to that of each fragment, supporting the hypothesis that only the C-terminal domain of intact apoE4 binds to lipid. We conclude that the N-terminal four-helix bundle can adopt either open or closed conformations, depending upon the surface concentration of emulsion-bound apoE.  相似文献   

13.

Background

Pregnancy-associated plasma protein-A (PAPP-A) is a local regulator of insulin-like growth factor (IGF) bioavailability in physiological systems, but many structural and functional aspects of the metzincin metalloproteinase remain to be elucidated. PAPP-A cleaves IGF binding protein (IGFBP)-4 and IGFBP-5. Cleavage of IGFBP-4, but not IGFBP-5, depends on the binding of IGF before proteolysis by PAPP-A can occur. The paralogue PAPP-A2 has two substrates among the six IGFBPs: IGFBP-3 and IGFBP-5.

Methods

Sets of chimeric proteins between IGFBP-4 and -5, and IGFBP-3 and -5 were constructed to investigate the structural requirements for IGF modulation. At the proteinase level, we investigated the importance of individual acidic amino acids positioned in the proteolytic domain of PAPP-A for proteolytic activity against IGFBP-4 and -5. Interaction between PAPP-A and its substrates was analyzed by surface plasmon resonance.

Results and conclusion

We provide data suggesting that the C-terminal domain of the IGFBPs is responsible for IGF-dependent modulation of access to the scissile bond. Loss or reduction of IGFBP proteolysis by PAPP-A was observed upon mutation of residues positioned in the unique 63-residue stretch separating the zinc and Met-turn motifs, and in the short sequence following the Met-turn methionine. A model of the proteolytic domain of PAPP-A suggests the presence of structural calcium ions in the C-terminal subdomain, implicated in IGFBP substrate interactions.

General significance

Detailed knowledge of interactions between PAPP-A and its substrates is required to understand the modulatory role of PAPP-A on IGF receptor stimulation.  相似文献   

14.
The binding of a herpes simplex virus type 1 (HSV-1) encoded polypeptide to a viral origin of DNA replication has been studied by using a gel retardation assay. Incubation of nuclear extract from HSV-1 infected cells with a labelled origin-containing fragment resulted in the formation of a specific retarded complex, the migration of which was further reduced in the presence of an antibody reactive with the UL9 gene product. Introduction of an additional copy of the UL9 gene, under the control of an immediate early (IE) promoter, conferred the ability to express origin binding activity at the non-permissive temperature upon an HSV-1 ts mutant blocked at the IE stage of infection. Endogenous or exogenous proteolytic activity revealed the presence of a relatively protease-resistant domain which retained sequence-specific DNA binding activity. The C-terminal 317 amino acids of the UL9 gene expressed as a fusion protein in Escherichia coli also bound to the origin. Our results demonstrate that the UL9 gene product binds to a viral origin and that sequence specific recognition and binding are specified by the C-terminal 37% of the polypeptide.  相似文献   

15.
The metalloproteinase pregnancy-associated plasma protein-A (PAPP-A) cleaves both insulin-like growth factor (IGF)-binding protein 4 (IGFBP-4) and -5 at a single site in their central domain causing the release of bioactive IGF. Inhibition of IGF signaling is relevant in human disease, and several drugs in development target the IGF receptor. However, inhibition of PAPP-A activity may be a valuable alternative. We have generated monoclonal phage-derived single chain fragment variable (scFv) antibodies which selectively inhibit the cleavage of IGFBP-4 by PAPP-A, relevant under conditions where cleavage of IGFBP-4 represents the final step in the delivery of IGF to the IGF receptor. None of the antibodies inhibited the homologous proteinase PAPP-A2, which allowed mapping of antibody binding by means of chimeras between PAPP-A and PAPP-A2 to the C-terminal Lin12-Notch repeat module, separated from the proteolytic domain by almost 1000 amino acids. Hence, the antibodies define a substrate binding exosite that can be targeted for the selective inhibition of PAPP-A proteolytic activity against IGFBP-4. In addition, we show that the Lin12-Notch repeat module reversibly binds a calcium ion and that bound calcium is required for antibody binding, providing a strategy for the further development of selective inhibitory compounds. To our knowledge these data represent the first example of differential inhibition of cleavage of natural proteinase substrates by exosite targeting. Generally, exosite inhibitors are less likely to affect the activity of related proteolytic enzymes with similar active site environments. In the case of PAPP-A, selective inhibition of IGFBP-4 cleavage by interference with exosite binding is a further advantage, as the activity against other known or unknown PAPP-A substrates, whose cleavage may not depend on binding to the same exosite, is not targeted.  相似文献   

16.
The human immunodeficiency virus (HIV) integrase (IN) protein mediates an essential step in the retroviral lifecycle, the integration of viral DNA into human DNA. A DNA-binding domain of HIV IN has previously been identified in the C-terminal part of the protein. We tested truncated proteins of the C-terminal region of HIV-1 IN for DNA binding activity in two different assays: UV-crosslinking and southwestern blot analysis. We found that a polypeptide fragment of 50 amino acids (IN220-270) is sufficient for DNA binding. In contrast to full-length IN protein, this domain is soluble under low salt conditions. DNA binding of IN220-270 to both viral DNA and non-specific DNA occurs in an ion-independent fashion. Point mutations were introduced in 10 different amino acid residues of the DNA-binding domain of HIV-2 IN. Mutation of basic amino acid K264 results in strong reduction of DNA binding and of integrase activity.  相似文献   

17.
Galectin-3, a beta-galactoside binding protein, contains a C-terminal carbohydrate recognition domain (CRD) and an N-terminal domain that includes several repeats of a proline-tyrosine-glycine-rich motif. Earlier work based on a crystal structure of human galectin-3 CRD, and modeling and mutagenesis studies of the closely homologous hamster galectin-3, suggested that N-terminal tail residues immediately preceding the CRD might interfere with the canonical subunit interaction site of dimeric galectin-1 and -2, explaining the monomeric status of galectin-3 in solution. Here we describe high-resolution NMR studies of hamster galectin-3 (residues 1--245) and several of its fragments. The results indicate that the recombinant N-terminal fragment Delta 126--245 (residues 1--125) is an unfolded, extended structure. However, in the intact galectin-3 and fragment Delta 1--93 (residues 94--245), N-terminal domain residues lying between positions 94 and 113 have significantly reduced mobility values compared with those expected for bulk N-terminal tail residues, consistent with an interaction of this segment with the CRD domain. In contrast to the monomeric status of galectin-3 (and fragment Delta 1--93) in solution, electron microscopy of negatively stained and rotary shadowed samples of hamster galectin-3 as well as the CRD fragment Delta 1--103 (residues 104--245) show the presence of a significant proportion (up to 30%) of oligomers. Similar imaging of the N-terminal tail fragment Delta 126--245 reveals the presence of fibrils formed by intermolecular interactions between extended polypeptide subunits. Oligomerization of substratum-adsorbed galectin-3, through N- and C-terminal domain interactions, could be relevant to the positive cooperativity observed in binding of the lectin to immobilized multiglycosylated proteins such as laminin.  相似文献   

18.
Talin, consisting of a 47-kDa N-terminal head domain (residues 1-433) and a 190-kDa C-terminal rod domain (residues 434-2541), links integrins to the actin cytoskeleton. We previously reported that the binding stoichiometry of integrin alpha(IIb)beta(3):talin is approximately 2:1. More recently, an integrin binding site has been localized to the talin head domain. In the present study, we identified another integrin binding site at the C-terminal region of the talin rod domain. In a solid phase binding assay, RGD affinity-purified alpha(IIb)beta(3) bound in a dose-dependent manner to microtiter wells coated with the isolated 190-kDa proteolytic fragment of the talin rod domain. Additionally, alpha(IIb)beta(3) also bound to the talin rod domain captured by 8d4, an anti-talin monoclonal antibody. Polyclonal antibodies raised against a recombinant protein fragment corresponding to the entire talin rod domain (anti-talin-R) inhibited alpha(IIb)beta(3) binding to intact talin by approximately 50% but completely blocked alpha(IIb)beta(3) binding to the talin rod domain. To localize the integrin binding site, we examined alpha(IIb)beta(3) binding to recombinant polypeptide fragments corresponding to partial sequences of the talin rod domain. Whereas alpha(IIb)beta(3) bound effectively to talin-(1075-2541) and talin-(1984-2541), it failed to bind to talin-(434-1076) and talin-(434-1975). Furthermore, the binding of alpha(IIb)beta(3) to talin-(1984-2541) was inhibited by anti-talin-R. These results indicate that an integrin binding site is located within residues 1984-2541 of the talin rod domain. Thus, talin contains two integrin binding sites, one in the homologous FERM (band four-point-one, ezrin, radixin, moesin) domain and another near its C terminus. Because talin exists as an anti-parallel homodimer in focal adhesions, the two integrin binding sites in the adjacent talin molecules would be in close proximity with each other.  相似文献   

19.
Proteolysis of insulin-like growth factor binding proteins (IGFBPs), the major carrier of insulin-like growth factors (IGFs) in the circulation, is an essential mechanism to regulate the bioavailability and half-live of IGFs. Screening for peptides in human hemofiltrate, stimulating the survival of PC-12 cells, resulted in the isolation of C-terminal IGFBP-2 fragments and intact IGF-II co-eluting during the chromatographic purification procedure. The IGFBP-2 fragments exhibited molecular masses of 12.7 and 12.9kDa and started with Gly169 and Gly167, respectively. The fragments were able to bind both IGFs. The stimulatory effect of the purified fraction on the survival of the PC-12 cells could be assigned exclusively to IGF-II, since it was abolished by the addition of neutralizing IGF-II antibodies. We suggest that in the circulation IGF-II is not only complexed with intact IGFBP but also with processed IGFBP-2 fragments not impairing the biological activity of IGF-II.  相似文献   

20.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号