首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.  相似文献   

2.
The purpose of the present study was to determine whether there is a menstrual cycle effect on heart rate, blood pressure and heart rate variability. 10 healthy regularly cycling females (age 19-23 years) were studied during the follicular phase and luteal phase over two month. We found significant changes in heart rate, AMo and stress index during the menstrual cycle with a minimum in the follicular phase and maximum in the luteal phase. The HF and LF components decreased more during the luteal phase than during the follicular phase (p < 0.05), whereas a tendency for increase LF/HF was observed in the luteal phase. In the follicular phase SDNN, pNN50, Mo, MxDMn were significantly higher than in the luteal phase. Furthermore, the VIK was higher in the luteal phase compared to the follicular phase (p = 0.003). Blood pressure did not show any significant change during both these phases of the menstrual cycle. These findings indicate that sympathetic nervous activity in the luteal phase is greater than in the follicular phase, whereas parasympathetic nervous activity is predominant in the follicular phase. A difference of the balance of ovarian hormones may be responsible for these changes of autonomic functions during the menstrual cycle.  相似文献   

3.
4.
This study examines some of the cardiovascular and respiratory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in anaesthetised dogs. Intravenous injection of PACAP 27 caused an increase in arterial blood pressure and an increase in heart rate. The blood pressure response was significantly reduced by adrenoceptor blockade suggesting a mechanism of action mediated in part via catecholamines. The heart rate increase was unaltered by adrenoceptor blockade suggesting a direct effect of PACAP 27. PACAP 27 also caused potentiation of cardiac slowing caused by stimulation of the vagus nerve. In addition, PACAP 27 powerfully stimulated breathing. This was probably evoked by stimulation of arterial chemoreceptors, because bilateral section of the carotid sinus nerves abolished this effect. PACAP 27 had no effect on the ability of the cardiac sympathetic nerve to increase heart rate, nor on the interaction between the sympathetic and parasympathetic systems in the heart.  相似文献   

5.
Following termination of vagal stimulation, heart rate increases above control (postvagal tachycardia). This phenomenon has been attributed to vagally mediated release of norepinephrine in the sinus node region, although other contributory factors may be important. The possibility that, during the postvagal period, the chronotropic efficacy of norepinephrine is enhanced was investigated. Mongrel dogs (N = 6) were pretreated with reserpine in order to minimize postvagal tachycardia and hence allow reliable detection of enhanced responsiveness to norepinephrine. The dogs were then anesthetized with chloralose, autonomically decentralized, and instrumented to record electrocardiogram, aortic blood pressure, and electrograms from right atrium and right ventricle. Thirty-, forty-, or sixty-second infusions of norepinephrine were administered via the sinus node artery. The mean cycle length decrease produced by norepinephrine alone was 95 msec (which corresponds to a heart rate increase of + 19.6 bpm). After a 30-sec period of vagal stimulation, norepinephrine infusions produced a cycle length decrease of 139 msec (+32.5 bpm). These results are significant at the P less than 0.05 level. It is concluded that norepinephrine infusions produce a significantly greater magnitude of tachycardia when administered postvagally. It is proposed that this postvagal potentiation of the chronotropic effect of norepinephrine may contribute to postvagal tachycardia. Indeed, there may be a synergistic relationship between this phenomenon and vagally mediated release of norepinephrine in the mediation of postvagal tachycardia.  相似文献   

6.
ATP released from circulating erythrocytes is a potential signal regulating muscle blood flow during exercise (exercise hyperemia), and intravascular ATP appears to blunt sympathetic vasoconstriction during exercise. Erythrocytes from patients with cystic fibrosis (CF) do not release ATP. The goal of the present study was to determine whether increases in forearm blood flow during exercise are blunted in CF patients and whether CF patients exhibit greater vasoconstrictor responsiveness during exercise. Nine control subjects and 10 CF patients who were free of other disease complications (approximately 96% O2 saturation) performed incremental rhythmic forearm exercise at 5, 10, and 15% of maximum handgrip strength for 21 min (7 min at each workload). We used a cold pressor test to evoke sympathetic vasoconstriction under resting conditions and at each exercise workload. As a control, subjects performed a second exercise bout without the cold pressor test. Continuous brachial artery blood velocity was monitored beat-to-beat, and vessel diameter was assessed by Doppler ultrasound. Artery diameter, as well as blood pressure, heart rate, and O2 saturation, was measured at steady-state exercise and at 1 min into the cold pressor stimulus. Blood pressure and heart rate responses to the forearm exercise and each cold pressor test were similar in both groups (P > 0.05). Contrary to our hypothesis, forearm blood flow (P = 0.91) and forearm vascular conductance (P = 0.82) were similar at rest and at each level of exercise between CF patients and controls. Additionally, there was no difference in the degree of sympathetic vasoconstriction between groups at rest and at each level of exercise (P = 0.22). Our results suggest that ATP released from the deformation of erythrocytes is not an obligatory signal for exercise hyperemia in human skeletal muscle.  相似文献   

7.
Our previous study (27) showed that the cardiac sympathetic afferent reflex (CSAR) was enhanced in dogs with congestive heart failure. The aim of this study was to test whether blood volume expansion, which is one characteristic of congestive heart failure, potentiates the CSAR in normal dogs. Ten dogs were studied with sino-aortic denervation and bilateral cervical vagotomy. Arterial pressure, left ventricular pressure, left ventricular epicardial diameter, heart rate, and renal sympathetic nerve activity were measured. Coronary blood flow was also measured and, depending on the experimental procedure, controlled. Blood volume expansion was carried out by infusion of isosmotic dextran into a femoral vein at 40 ml/kg at a rate of 50 ml/min. CSAR was elicited by application of bradykinin (5 and 50 microg) and capsaicin (10 and 100 microg) to the epicardial surface of the left ventricle. Volume expansion increased arterial pressure, left ventricular pressure, left ventricular diameter, and coronary blood flow. Volume expansion without controlled coronary blood flow only enhanced the RSNA response to the high dose (50 microg) of epicardial bradykinin (17. 3 +/- 1.9 vs. 10.6 +/- 4.8%, P < 0.05). However, volume expansion significantly enhanced the RSNA responses to all doses of bradykinin and capsaicin when coronary blood flow was held at the prevolume expansion level. The RSNA responses to bradykinin (16. 9 +/- 4.1 vs. 5.0 +/- 1.3% for 5 microg, P < 0.05, and 28.9 +/- 3.7 vs. 10.6 +/- 4.8% for 50 microg, P < 0.05) and capsaicin (29.8 +/- 6.0 vs. 9.3 +/- 3.1% for 10 microg, P < 0.05, and 34.2 +/- 2.7 vs. 15.1 +/- 2.7% for 100 microg, P < 0.05) were significantly augmented. These results indicate that acute volume expansion potentiated the CSAR. These data suggest that enhancement of the CSAR in congestive heart failure may be mediated by the concomitant cardiac dilation, which accompanies this disease state.  相似文献   

8.
It is still unclear whether the low-frequency oscillation in heart rate is generated by an endogenous neural oscillator or by a baroreflex resonance. Our aim was to investigate this issue by analyzing blood pressure and heart rate variability and the baroreflex function in paraplegic subjects with spinal cord injury below the fourth thoracic vertebra. These subjects were selected because they represent a model of intact central neural drive to the heart, with a partially impaired autonomic control of the vessels. In our study, arterial blood pressure and ECG were recorded in 33 able-bodied controls and in 33 subjects with spinal cord lesions between the fifth thoracic and the fourth lumbar vertebra 1) during supine rest (lowest sympathetic activation), 2) sitting on a wheelchair (light sympathetic activation), and 3) during exercise (moderate sympathetic activation). Blood pressure and heart rate spectra, coherence, and baroreflex function (sequence technique) were estimated in each condition. Compared with controls, paraplegic subjects showed a reduction of the low-frequency power of blood pressure and heart rate, and, unlike controls, a 0.1-Hz peak did not appear in their spectra. Sympathetic activation increased the 0.1-Hz peak of blood pressure and heart rate and the coherence at 0.1 Hz in controls only. Paraplegic subjects also had significantly lower baroreflex effectiveness and greater blood pressure variability. In conclusion, the disappearance of the 10-s oscillation of heart rate and blood pressure in subjects with spinal cord lesion supports the hypothesis of the baroreflex nature of this phenomenon.  相似文献   

9.
To examine whether the impacts of hypoxia on autonomic regulations involve the phasic modulations as well as tonic controls of cardiovascular variables, heart rate, blood pressure, and their variability during isocapnic progressive hypoxia were analyzed in trained conscious dogs prepared with a permanent tracheostomy and an implanted blood pressure telemetry unit. Data were obtained at baseline and when minute ventilation (VI) first reached 10 (VI10), 15 (VI15), and 20 (VI20) l/min during hypoxia. Time-dependent changes in the amplitudes of the high-frequency component of the R-R interval (RRIHF) and the low-frequency component of mean arterial pressure (MAPLF) were analyzed by complex demodulation. In a total of 47 progressive hypoxic runs in three dogs, RRIHF decreased at VI15 and VI20 and MAPLF increased at VI10 and VI15 but not at VI20, whereas heart rate and arterial pressure increased progressively with advancing hypoxia. We conclude that the autonomic responses to isocapnic progressive hypoxia involve tonic controls and phasic modulations of cardiovascular variables; the latter may be characterized by a progressive reduction in respiratory vagal modulation of heart rate and a transient augmentation in low-frequency sympathetic modulation of blood pressure.  相似文献   

10.
The present study in dogs indicates that the peripheral sympathetic fibers develop mostly after birth and reach a full maturity at about 2 months of life. The norepinephrine content of the heart, spleen, intestine, salivary glands, and adrenal glands increased from birth to 56 days of age. In contrast, the content of the stellate ganglia decreased during this period. In most of the organs studied, the uptake of [3H] norepinephrine developed in parallel with the norepinephrine content, except in the right atrium and salivary glands where it was fully developed soon after birth. During development, the systemic blood pressure increased from 40 to 100 mm Hg. Bilateral adrenal vessel clamping failed to induce a fall in blood pressure in growing dogs which indicates that the adrenal medulla or the baroreceptors did not fully compensate for the lack of peripheral sympathetic fibers and for the lower blood pressure in newborn animals. Although cardiac norepinephrine content was still very low in 10-day-old animals, cardiovascular responses to direct and reflex sympathetic stimulation were similar to those observed in 56-day-old animals. These results indicate that the sympathetic nervous system becomes functional before the fibers reach their full maturity.  相似文献   

11.
The stochastic versus deterministic solution of the Seidel–Herzel model describing the baroreceptor control loop (which regulates the short-time heart rate) are compared with the aim of exploring the heart rate variability. The deterministic model solutions are known to bifurcate from the stable to sustained oscillatory solutions if time delays in transfer of signals by sympathetic nervous system to the heart and vasculature are changed. Oscillations in the heart rate and blood pressure are physiologically crucial since they are recognized as Mayer waves. We test the role of delays of the sympathetic stimulation in reconstruction of the known features of the heart rate. It appears that realistic histograms and return plots are attainable if sympathetic time delays are stochastically perturbed, namely, we consider a perturbation by a white noise. Moreover, in the case of stochastic model the bifurcation points vanish and Mayer oscillations in heart period and blood pressure are observed for whole considered space of sympathetic time delays.   相似文献   

12.
Congestive heart failure is associated with a loss of circadian and short-term variability in blood pressure and heart rate. In order to assess the contribution of elevated cardiac sympathetic activity to the disturbed cardiovascular regulation, we monitored blood pressure and heart rate in mice with cardiac overexpression of the β1-adrenoceptor prior to the development of overt heart failure. Telemetry transmitters for continuous monitoring of blood pressure and heart rate were implanted in 8 to 9-week-old wildtype and transgenic mice, derived from crosses of heterozygous transgenic (line β1TG4) and wildtype mice. Cardiovascular circadian patterns were analyzed under baseline conditions and during treatment with propranolol (500 mg/L in drinking water). Short-term variability was assessed by spectral analysis of beat-to-beat data sampled for 30 min at four circadian times. Transgenic β1TG4 mice showed an increase in 24 h heart rate, while blood pressure was not different from wildtype controls. Circadian patterns in blood pressure and heart were preserved in β1TG4 mice. Addition of propranolol to the animals' drinking water led to a reduction in heart rate and its 24 h variation in both strains of mice. Short-term variability in blood pressure was not different between wildtype and β1TG4 mice, but heart rate variability in the transgenic animals showed a rightward shift of the high-frequency component in the nocturnal activity period, suggesting an increase in respiratory frequency. In conclusion, the present study shows that both the circadian and the short-term regulation of blood pressure and heart rate are largely preserved in young, nonfailing β1-transgenic mice. This finding suggests that the loss of blood pressure and heart rate variability observed in human congestive heart failure cannot be attributed solely to sympathetic overactivity but reflects the loss of adrenergic responsiveness to changes in the activity of the autonomic nervous system.  相似文献   

13.
Systolic and diastolic blood pressures and heart rate were monitored in a group of 20 young healthy men for 24 hours. Period of time between 8 o'clock a.m. and 10 o'clock p.m. was treated as waking state whereas period of time from 12 p.m. to 6 a.m. as sleep phase. Mean value of systolic blood pressure for waking state was 124.6 +/- 7.6 mm Hg, and for sleep phase 110.4 +/- 11.5 mm Hg. (p < .001). Mean diastolic blood pressures were also significantly different (76.5 +/- 5.9 mm Hg and 63.8 +/- 7.7 mm Hg, respectively), the same concerns heart rate (79.6 +/- 6.4 and 63.0-7.2 min-1, respectively). In both cases p < .001. To evaluate dependence of heart rate on systolic blood pressure in waking state the following calculation was made: HR = 0.230 x systolic blood pressure +51.4 (r = 0.24; p < .001) whereas for sleep phase r did not reach a level of statistical significance (HR = 0.074 x systolic blood pressure + 53.9; r = 0.094). Single or even multiple measurements of the arterial blood pressure are not sufficient to evaluate circadian changes.  相似文献   

14.
The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.  相似文献   

15.
Respiratory sinus arrhythmia (RSA) may serve to enhance pulmonary gas exchange efficiency by matching pulmonary blood flow with lung volume within each respiratory cycle. We examined the hypothesis that RSA is augmented as an active physiological response to hypercapnia. We measured electrocardiograms and arterial blood pressure during progressive hypercapnia in conscious dogs that were prepared with a permanent tracheostomy and an implanted blood pressure telemetry unit. The intensity of RSA was assessed continuously as the amplitude of respiratory fluctuation of heart rate using complex demodulation. In a total of 39 runs of hypercapnia in 3 dogs, RSA increased by 38 and 43% of the control level when minute ventilation reached 10 and 15 l/min, respectively (P < 0.0001 for both), and heart rate and mean arterial pressure showed no significant change. The increases in RSA were significant even after adjustment for the effects of increased tidal volume, respiratory rate, and respiratory fluctuation of arterial blood pressure (P < 0.001). These observations indicate that increased RSA during hypercapnia is not the consequence of altered autonomic balance or respiratory patterns and support the hypothesis that RSA is augmented as an active physiological response to hypercapnia.  相似文献   

16.
During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing. The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse least squares problem for parameter estimation and successfully demonstrate that our mathematical model can accurately predict heart rate dynamics observed in data obtained from healthy young, healthy elderly, and hypertensive elderly subjects. One of our key findings indicates that, to successfully validate our model against clinical data, it is necessary to include the vestibulo-sympathetic reflex. Furthermore, our model reveals that the transfer between the nerve firing and blood pressure is nonlinear and follows a hysteresis curve. In healthy young people, the hysteresis loop is wide, whereas, in healthy and hypertensive elderly people, the hysteresis loop shifts to higher blood pressure values, and its area is diminished. Finally, for hypertensive elderly people, the hysteresis loop is generally not closed, indicating that, during postural change from sitting to standing, baroreflex modulation does not return to steady state during the first minute of standing.  相似文献   

17.
The purpose of this study was to test the hypothesis that sympathetic vasoconstriction is rapidly blunted at the onset of forearm exercise. Nine healthy subjects performed 5 min of moderate dynamic forearm handgrip exercise during -60 mmHg lower body negative pressure (LBNP) vs. without (control). Beat-by-beat forearm blood flow (Doppler ultrasound), arterial blood pressure (finger photoplethysmograph), and heart rate were collected. LBNP elevated resting heart rate by approximately 45%. Mean arterial blood pressure was not significantly changed (P = 0.196), but diastolic blood pressure was elevated by approximately 10% and pulse pressure was reduced by approximately 20%. At rest, there was a 30% reduction in forearm vascular conductance (FVC) during LBNP (P = 0.004). The initial rapid increase in FVC with exercise onset reached a plateau between 10 and 20 s of 126.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in control vs. only 101.6 +/- 4.1 ml. min(-1). 100 mmHg(-1) in LBNP (main effect of condition, P = 0.003). This difference was quickly abolished during the second, slower phase of adaptation in forearm vascular tone to steady state. These data are consistent with a rapid onset of functional sympatholysis, in which local substances released with the onset of muscle contractions impair sympathetic neural vasoconstrictor effectiveness.  相似文献   

18.
The cardiovascular effects of bolus doses of methionine-enkephalin (Met5-ENK) (1 to 100 micrograms/kg) were studied in 9 subjects in whom, at cardiac catheterization for evaluation of chest pain, patent coronary arteries were found. Met5-ENK produced a simultaneous increase in blood pressure and heart rate beginning within 20 sec, reaching maximal values between 30 and 40 sec, and then terminating by 60 sec. Heart rate, systolic, diastolic, and mean arterial blood pressures increased significantly (p less than 0.0005); pulse pressure remained unchanged. Positive dose-effect relationships were observed for heart rate (p less than 0.002), systolic, diastolic, and mean arterial blood pressures (p less than 0.05). Naloxone (0.5 mg/kg), given to 4 subjects, prevented the heart rate and blood pressure changes associated with Met5-ENK administration, demonstrating that the cardiovascular changes were mediated by opiate receptors. Subjects also described cutaneous paresthesias which were not prevented by naloxone pretreatment. These data suggest a role for peripheral enkephalins in cardiovascular regulation.  相似文献   

19.
A relationship between abdominal obesity and hypertension is well established. In search for an early-onset defect in adipocyte function linking these two conditions, we compared catecholamine sensitivity in subcutaneous abdominal fat cells with 24-hour systolic, mean arterial and diastolic blood pressure in 16 healthy, normotensive subjects. Clear inter-individual variations in the adipocyte lipolytic adrenoceptor sensitivity (pD2) for noradrenaline were observed in dose-response experiments (i.e., about 4 log units). An inverse and independent correlation was found between the 24-hour systolic blood pressure and pD2 for noradrenaline (r = ?0.67, p < 0.01). The mean arterial blood pressure was also negatively correlated to peripheral noradrenaline sensitivity (r = ?0.58, p < 0.05). However, no significant relationship between the 24-hour diastolic blood pressure and pD2 for noradrenaline was demonstrated. In conclusion we suggest that catecholamine resistance in subcutaneous fat cells may be associated with autonomic dysfunction and impaired blood pressure regulation. This finding is supported by the fact that both noradrenaline sensitivity and 24-hour systolic blood pressure also are correlated to the individual orthostatic heart rate responses, reflecting the sympathetic nervous system tone (r=0.61, p=0.01 and r= ?0.53, p=0.03, respectively). The relationship between noradrenaline sensitivity and systolic blood pressure may be of importance in the early development of hypertension in man.  相似文献   

20.
In rabbits the depressor nerves and cardiac vagal branches were stimulated. Their actions on heart rate, atrio-ventricular conduction time, myocardial action potential and mean central blood pressure were recorded. The frequency-effect characteristics of the chronotropic, dromotropic and electrotropic actions on the heart, resulting from afferent and efferent nerve stimulation, are compared. The participation of each of the depressor nerves in their total effects on heart rate and blood pressure is studied. Time courses of heart rate and blood pressure decrease by afferent and efferent nerve stimulation with sinusoidally modulated pulse rates are presented. The results are discussed with respect to the different dynamics of blood pressure and heart rate control. It is concluded that at least two mechanisms are involved in blood pressure control by the depressor nerves: 1. Decrease of vascular resistance by lowering the sympathetic tone. 2. Decrease of heart rate by enhancing the cardiac vagal activity. It is suggested that the parasympathetic control unit compensates rapid disturbances, whereas the slow-acting sympathetic vascular mechanism exerts a long-time pressure control of high efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号