首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degree of methylesterification (DM) of homogalacturonans (HGs), the main constituent of pectins in Arabidopsis thaliana, can be modified by pectin methylesterases (PMEs). Regulation of PME activity occurs through interaction with PME inhibitors (PMEIs) and subtilases (SBTs). Considering the size of the gene families encoding PMEs, PMEIs and SBTs, it is highly likely that specific pairs mediate localized changes in pectin structure with consequences on cell wall rheology and plant development. We previously reported that PME17, a group 2 PME expressed in root, could be processed by SBT3.5, a co-expressed subtilisin-like serine protease, to mediate changes in pectin properties and root growth. Here, we further report that a PMEI, PMEI4, is co-expressed with PME17 and is likely to regulate its activity. This sheds new light on the possible interplay of specific PMEs, PMEIs and SBTs in the fine-tuning of pectin structure.  相似文献   

2.

Background and Aims

In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform.

Methods

Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development.

Key Results

A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm.

Conclusions

By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME–SBT pairs.  相似文献   

3.
Pectins are major components of primary cell wall that play a crucial role in plant development. After biosynthesis, pectins are secreted in the cell wall by Golgi-derived vesicles under a highly methylesterified form and are de-methylesterified by pectin methylesterases (PME). It is hypothesized that PME might be regulated by pectin methylesterase inhibitor (PMEI). In this paper, we show by isoelectric focalisation and subsequent zymogram that kiwi PMEI was able to inhibit Arabidopsis PME activity by forming a complex. The complexes were stable under a wide range of ionic strength and pH. Moreover, PMEI might be able to form a complex with basic PMEs including three PMEs strongly expressed in root and four PMEs expressed in pollen grains. Finally, exogenous treatment with kiwi PMEI was able to reduce the activity of cell wall resident PMEs with persistent effects such as an increase of the root growth and a dramatic effect on pollen tube stability.  相似文献   

4.
Pectin is synthesized in a highly methylesterified form in the Golgi cisternae and partially de-methylesterified in muro by pectin methylesterases (PMEs). Arabidopsis thaliana produces a local and strong induction of PME activity during the infection of the necrotrophic fungus Botrytis cinerea. AtPME17 is a putative A. thaliana PME highly induced in response to B. cinerea. Here, a fine tuning of AtPME17 expression by different defence hormones was identified. Our genetic evidence demonstrates that AtPME17 strongly contributes to the pathogen-induced PME activity and resistance against B. cinerea by triggering jasmonic acid–ethylene-dependent PDF1.2 expression. AtPME17 belongs to group 2 isoforms of PMEs characterized by a PME domain preceded by an N-terminal PRO region. However, the biochemical evidence for AtPME17 as a functional PME is still lacking and the role played by its PRO region is not known. Using the Pichia pastoris expression system, we demonstrate that AtPME17 is a functional PME with activity favoured by an increase in pH. AtPME17 performs a blockwise pattern of pectin de-methylesterification that favours the formation of egg-box structures between homogalacturonans. Recombinant AtPME17 expression in Escherichia coli reveals that the PRO region acts as an intramolecular inhibitor of AtPME17 activity.  相似文献   

5.
After replication in the cytoplasm, viruses spread from the infected cell into the neighboring cells through plasmodesmata, membranous channels embedded by the cell wall. As obligate parasites, viruses have acquired the ability to utilize host factors that unwillingly cooperate for the viral infection process. For example, the viral movement proteins (MP) interacts with the host pectin methylesterase (PME) and both proteins cooperate to sustain the viral spread. However, how and where PMEs interact with MPs and how the PME/MP complexes favor the viral translocation is not well understood. Recently, we demonstrated that the overexpression of PME inhibitors (PMEIs) in tobacco and Arabidopsis plants limits the movement of Tobacco mosaic virus and Turnip vein clearing virus and reduces plant susceptibility to these viruses. Here we discuss how overexpression of PMEI may reduce tobamovirus spreading.  相似文献   

6.
The decrease of strawberry (Fragariaxananassa Duch.) fruit firmness observed during ripening is partly attributed to pectolytic enzymes: polygalacturonases, pectate lyases and pectin methylesterases (PMEs). In this study, PME activity and pectin content and esterification degree were measured in cell walls from ripening fruits. Small green, large green, white, turning, red and over-ripe fruits from the Elsanta cultivar were analyzed. Using the 2F4 antibody directed against the calcium-induced egg box conformation of pectin, we show that calcium-bound acidic pectin was nearly absent from green and white fruits, but increased abruptly at the turning stage, while the total pectin content decreased only slightly as maturation proceeded. Isoelectrofocalisation performed on wall protein extracts revealed the expression of at least six different basic PME isoforms. Maximum PME activity was detected in green fruits and steadily decreased to reach a minimum in senescent fruits. The preliminary role of PMEs and subsequent pectin degradation by pectolytic enzymes is discussed.  相似文献   

7.
In dicots, pectins are the major structural determinant of the cell wall at the pollen tube tip. Recently, immunological studies revealed that esterified pectins are prevalent at the apex of growing pollen tubes, where the cell wall needs to be expandable. In contrast, lateral regions of the cell wall contain mostly de-esterified pectins, which can be cross-linked to rigid gels by Ca(2+) ions. In pollen tubes, several pectin methylesterases (PMEs), enzymes that de-esterify pectins, are co-expressed with different PME inhibitors (PMEIs). This raises the possibility that interactions between PMEs and PMEIs play a key role in the regulation of cell-wall stability at the pollen tube tip. Our data establish that the PME isoform AtPPME1 (At1g69940) and the PMEI isoform AtPMEI2 (At3g17220), which are both specifically expressed in Arabidopsis pollen, physically interact, and that AtPMEI2 inactivates AtPPME1 in vitro. Furthermore, transient expression in tobacco pollen tubes revealed a growth-promoting activity of AtPMEI2, and a growth-inhibiting effect of AtPPME1. Interestingly, AtPPME1:YFP accumulated to similar levels throughout the cell wall of tobacco pollen tubes, including the tip region, whereas AtPMEI2:YFP was exclusively detected at the apex. In contrast to AtPPME1, AtPMEI2 localized to Brefeldin A-induced compartments, and was found in FYVE-induced endosomal aggregates. Our data strongly suggest that the polarized accumulation of PMEI isoforms at the pollen tube apex, which depends at least in part on local PMEI endocytosis at the flanks of the tip, regulates cell-wall stability by locally inhibiting PME activity.  相似文献   

8.
Pectin methylesterases (PMEs) play an essential role during plant development by affecting the mechanical properties of the plant cell wall. Previous work indicated that plant PMEs may be subject to post-translational regulation. Here, we report the analysis of two proteinaceous inhibitors of PME in Arabidopsis thaliana (AtPMEI1 and 2). The functional analysis of recombinant AtPMEI1 and 2 proteins revealed that both proteins are able to inhibit PME activity from flowers and siliques. Quantitative RT-PCR analysis indicated that expression of AtPMEI1 and 2 mRNAs is tightly regulated during plant development with highest mRNA levels in flowers. Promotor::GUS fusions demonstrated that expression is mostly restricted to pollen.  相似文献   

9.
Pectin methylesterases (PMEs) catalyse the removal of methyl esters from the homogalacturonan (HG) backbone domain of pectin, a ubiquitous polysaccharide in plant cell walls. The degree of methyl esterification (DE) impacts upon the functional properties of HG within cell walls and plants produce numerous PMEs that act upon HG in muro. Many microbial plant pathogens also produce PMEs, the activity of which renders HG more susceptible to cleavage by pectin lyase and polygalacturonase enzymes and hence aids cell wall degradation. We have developed a novel microarray‐based approach to investigate the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime pectin substrate and, after digestion the enzyme/substrate mixtures were printed as microarrays. The loss of activity that resulted from certain mutations was detected by probing arrays with a mAb (JIM7) that preferentially binds to HG with a relatively high DE. Active PMEs therefore resulted in diminished JIM7 binding to the lime pectin substrate, whereas inactive PMEs did not. Our findings demonstrate the feasibility of our approach for rapidly testing the effects on PME activity of substituting a wide variety of amino acids at different positions.  相似文献   

10.
11.
Pollen-specific pectin methylesterase involved in pollen tube growth   总被引:1,自引:0,他引:1  
Pollen tube elongation in the pistil is a crucial step in the sexual reproduction of plants. Because the wall of the pollen tube tip is composed of a single layer of pectin and, unlike most other plant cell walls, does not contain cellulose or callose, pectin methylesterases (PMEs) likely play a central role in the pollen tube growth and determination of pollen tube morphology. Thus, the functional studies of pollen-specific PMEs, which are still in their infancy, are important for understanding the pollen development. We identified a new Arabidopsis pollen-specific PME, AtPPME1, characterized its native expression pattern, and used reverse genetics to demonstrate its involvement in determination of the shape of the pollen tube and the rate of its elongation.  相似文献   

12.
Pectin methylesterase inhibitor   总被引:1,自引:0,他引:1  
Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.  相似文献   

13.
14.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

15.
Pectin methylesterase (PME) catalyzes the de-methylesterification of pectin in plant cell walls during cell elongation.1 Pectins are mainly composed of α(1, 4)-D-galacturonosyl acid units that are synthesized in a methylesterified form in the Golgi apparatus to prevent any interaction with Ca2+ ions during their intracellular transport.2 The highly methylesterified pectins are then secreted into the apoplasm3 and subsequently de-methylesterified in muro by PMEs. This can either induce the formation of pectin gels through the Ca2+ crosslinking of neighboring non-methylesterified chains or create substrates for pectin-degrading enzymes such as polygalacturonases and pectate lyases for the initiation of cell wall loosening.4 PMEs belong to a large multigene family. Sixty­six PME-related genes are predicted in the Arabidopsis genome.1 Among them, we have recently shown that AtPME3 (At3g14310), a major basic PME isoform in A. thaliana, is ubiquitously expressed in vascular tissues and play a role in adventitious rooting.5 In flax (Linum usitatissimum), three genes encoding PMEs have been sequenced so far, including LuPME3, the ortholog of AtPME3. Analysis of the LuPME3 isoform brings new insights into the processing of these proteins.  相似文献   

16.
Ribosome-inactivating proteins (RIPs, EC 3.2.2.22) are plant enzymes that can inhibit the translation process by removing single adenine residues of the large rRNA. These enzymes are known to function in defense against pathogens, but their biological role is unknown, partly due to the absence of work on RIPs in a model plant. In this study, we purified a protein showing RIP activity from Arabidopsis thaliana by employing chromatography separations coupled with an enzymatic activity. Based on N-terminal and internal amino acid sequencing, the RIP purified was identified as a mature form of pectin methylesterase (PME, At1g11580). The purified native protein showed both PME and RIP activity. PME catalyzes pectin deesterification, releasing acid pectin and methanol, which cause cell wall changes. We expressed the full-length and mature form of cDNA clones into an expression vector and transformed it in Escherichia coli for protein expression. The recombinant PME proteins (full-length and mature) expressed in E. coli did not show either PME or RIP activity, suggesting that post-translational modifications are important for these enzymatic activities. This study demonstrates a new function for an old enzyme identified in a model plant and discusses the possible role of a protein's conformational changes corresponding to its dual enzymatic activity.  相似文献   

17.
Pectin methylesterases (PMEs) catalyze pectin demethylation and facilitate the determination of the degree of methyl esterification of cell wall in higher plants. The regulation of PME activity through endogenous proteinaceous PME inhibitors (PMEIs) alters the status of pectin methylation and influences plant growth and development. In this study, we performed a PMEI screening assay using a chemical library and identified a strong inhibitor, phenylephrine (PE). PE, a small molecule, competitively inhibited plant PMEs, including orange PME and Arabidopsis PME. Physiologically, cultivation of Brassica campestris seedlings in the presence of PE showed root growth inhibition. Microscopic observation revealed that PE inhibits elongation and development of root hairs. Molecular studies demonstrated that Root Hair Specific 12 (RHS12) encoding a PME, which plays a role in root hair development, was inhibited by PE with a Ki value of 44.1?μM. The biochemical mechanism of PE-mediated PME inhibition as well as a molecular docking model between PE and RHS12 revealed that PE interacts within the catalytic cleft of RHS12 and interferes with PME catalytic activity. Taken together, these findings suggest that PE is a novel and non-proteinaceous PME inhibitor. Furthermore, PE could be a lead compound for developing a potent plant growth regulator in agriculture.  相似文献   

18.
Lewis KC  Selzer T  Shahar C  Udi Y  Tworowski D  Sagi I 《Phytochemistry》2008,69(14):2586-2592
Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here, we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin methyl esterases. In a gel assay for PME activity, EGCG blocked esterase activity of pure PME as well as PME extracts from citrus and from parasitic plants. Fluorometric tests were used to determine the IC50 for a synthetic substrate. Molecular docking analysis of PME and EGCG suggests close interaction of EGCG with the catalytic cleft of PME. Inhibition of PME by the green tea compound, EGCG, provides the means to study the diverse roles of PMEs in cell wall metabolism and plant development. In addition, this study introduces the use of EGCG as natural product to be used in the food industry and agriculture.  相似文献   

19.
Pectins are fundamental polysaccharides in the plant primary cell wall. Pectins are synthesized and secreted to cell walls as highly methyl-esterified polymers and then demethyl-esterified by pectin methylesterases (PMEs), which are spatially regulated by pectin methylesterase inhibitors (PMEIs). Although PME and PMEI genes are pivotal in plant cell wall formation, few studies have focused on the evolutionary patterns of the PME and PMEI gene families. In this study, the gene origin, evolution, and expression diversity of these two families were systematically analyzed using 11 representative species, including algae, bryophytes, lycophytes and flowering land plants. The results show that 1) for the two subfamilies (PME and proPME) of PME, the origin of the PME subfamily is consistent with the appearance of pectins in early charophyte cell walls, 2) Whole genome duplication (WGD) and tandem duplication contribute to the expansion of proPME and PMEI families in land plants, 3) Evidence of selection pressure shows that the proPME and PMEI families have rapidly evolved, particularly the PMEI family in vascular plants, and 4) Comparative expression profile analysis of the two families indicates that the eudicot Arabidopsis and monocot rice have different expression patterns. In addition, the gene structure and sequence analyses show that the origin of the PMEI domain may be derived from the neofunctionalization of the pro domain after WGD. This study will advance the evolutionary understanding of the PME and PMEI families and plant cell wall development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号