首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
Haemophilus influenzae Rd and its derivatives are mutated either not at all or to only a very small extent by ultraviolet (UV) radiation, X-rays, methyl methanesulfonate, and nitrogen mustard, though they are readily mutated by such agents as N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and nitrosocarbaryl. In these respects H. influenzae Rd resembles the lexA mutants of Escherichia coli that lack the SOS or reclex UV-inducible error-prone repair system. This similarity is further brought out by the observation that chloramphenicol has little or no effect on post-replication repair after UV irradiation. In E. coli, chloramphenicol has been reported to considerably inhibit post-replication repair in the wild type but not in the lexA mutant. Earlier work has suggested that most or all the mutations induced in H. influenzae by NC result from error-prone repair. Combined treatment with NC and either X-rays or UV shows that the NC error-prone repair system does not produce mutations from the lesions induced by these radiations even while it is producing them from its own lesions. It is concluded that the NC error-prone repair system or systems and the reclex error-prone system are different.  相似文献   

2.
Plant specific O-glycosylation of proteins includes the attachment of arabinogalactan to hydroxyproline (Hyp) residues. These Hyp residues are generated from peptidyl proline residues by the action of prolyl 4-hydroxylase which requires the ferrous ion. We investigated the effect of the ferrous chelator, 2,2'-dipyridyl on tobacco plants, and found that such treatment reduced the arabinogalactosylation of proteins.  相似文献   

3.
1. Whereas the second-order rate constants for the reaction of the thiolate ion of 2-mercaptoethanol with 4,4'-dipyridyl disulphide (k4PDS) and with 5,5'-dithiobis-2-nitrobenzoate dianion increase with decreasing dielectric constant of the solvent, or remain unchanged, the rate constant for the analogous reaction with 2,2'-dipyridyl disulphide (k2PDS) decreases. This anomalous solvent effect and other unusual physicochemical properties of 2,2'-dipyridyl disulphide are discussed. 2. The differential effect of solvent on the reactions of thiolate ion with the 2,2'- and 4,4'-dipyridyl disulphides is shown to provide a method of characterizing solvent environments of thiol groups in proteins by a reactivity-probe method that should not suffer from the usual drawback associated with the existence of steric or binding effects of unknown magnitude. Application of the method to ficin (EC 3.4.22.3) suggests that its active-centre thiol group resides in a relatively hydrophobic environment. 3. The pH-k profile for the reaction of ficin with 4,4'-dipyridyl disulphide is reported.  相似文献   

4.
Recently, hydrogen peroxide and its free-radical product, the hydroxyl radical (OH.) have been identified as major sources of DNA damage in living organisms. They occur as ubiquitous metabolic by-products and, in humans, cause several thousand damages in a cell's DNA per day. They are thought to be a major source of DNA damage leading to aging and cancer in multicellular organisms. This raises two questions. First, what pathways are used in repair of DNA damages caused by H2O2 and OH.? Second, a new theory has been proposed that sexual reproduction (sex) evolved to promote repair of DNA in the germ line of organisms. If this theory is correct, then the type of repair specifically available during the sexual process should be able to deal with important natural lesions such as those produced by H2O2 and OH. . Does this occur? We examined repair of hydrogen peroxide damage to DNA, using a standard bacteriophage T4 test system in which sexual reproduction is either permitted or not permitted. Post-replication recombinational repair and denV-dependent excision repair are not dependent on sex. Both of these processes had little or no effect on lethal H2O2 damage. Also, an enzyme important in repair of H2O2-induced DNA damage in the E. coli host cells, exonuclease III, was not utilized in repair of lethal H2O2 damage to the phage. However, multiplicity reactivation, a recombinational form of repair depending on the sexual interaction of two or more of the bacteriophage, was found to repair lethal H2O2 damages efficiently. Our results lend support to the repair hypothesis of sex. Also the homology-dependent recombinational repair utilized in the phage sexual process may be analogous to the homology-dependent recombination which is widespread in diploid eucaryotes. The recombinational repair pathway found in phage T4 may thus be a widely applicable model for repair of the ubiquitous DNA damage caused by endogenous oxidative reactions.  相似文献   

5.
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.  相似文献   

6.
Friedreich's ataxia (FRDA) is caused by low expression of frataxin, a small mitochondrial protein. Studies with both yeast and mammals have suggested that decreased frataxin levels lead to elevated intramitochondrial concentrations of labile (chelatable) iron, and consequently to oxidative mitochondrial damage. Here, we used the mitochondrion-selective fluorescent iron indicator/chelator rhodamine B-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzylester (RPA) to determine the mitochondrial chelatable iron of FRDA patient lymphoblast and fibroblast cell lines, in comparison with age- and sex-matched control cells. No alteration in the concentration of mitochondrial chelatable iron could be observed in patient cells, despite strongly decreased frataxin levels. Uptake studies with (55)Fe-transferrin and iron loading with ferric ammonium citrate revealed no significant differences in transferrin receptor density and iron responsive protein/iron regulatory element binding activity between patients and controls. However, sensitivity to H(2)O(2) was significantly increased in patient cells, and H(2)O(2) toxicity could be completely inhibited by the ubiquitously distributing iron chelator 2,2'-dipyridyl, but not by the mitochondrion-selective chelator RPA. Our data strongly suggest that frataxin deficiency does not affect the mitochondrial labile iron pool or other parameters of cellular iron metabolism and suggest a decreased antioxidative defense against extramitochondrial iron-derived radicals in patient cells. These results challenge current concepts favoring the use of mitochondrion-specific iron chelators and antioxidants to treat FRDA.  相似文献   

7.
A cross-adaptive response (CAR), defined as a reduction of the effects of an agent by pretreatment with another agent, was demonstrated when E. coli WP2 cells were pretreated with hydrogen peroxide (H2O2) followed by challenging treatment with aldehyde compounds. Pretreatment with a sublethal dose (60 microM) of H2O2 for 30 min made WP2 cells resistant to the killing effects of formaldehyde (FA), and 4 other mutagenic aldehydes: glutaraldehyde, glyoxal, methyl glyoxal and chloroacetaldehyde. CAR was also observed in WP2uvrA (uvrA-) and ZA12 (umuC-) cells, but not in ZA60 (recA-) and CM561 (lexA- (Ind-] cells. A role of recA and lexA in CAR was further suggested by the lack of beta-galactosidase induction in recA- and lexA- cells by H2O2. CAR and beta-galactosidase induction, however, were found to be separate events since CAR was recovered by introducing the recA+ gene into lexA- cells, but no induction of beta-galactosidase by H2O2 was observed in cells with the same gene transfer. These results suggest that H2O2 has the capacity to induce a function which reduces the killing effects of aldehydes, and the function is controlled by the recA gene without involvement of SOS response.  相似文献   

8.
Ferrous ion (Fe(2+)) is long thought to be the most likely active species, producing oxidants through interaction of Fe(2+) with oxygen (O(2)). Because current iron overload therapy uses only Fe(3+) chelators, such as desferrioxamine (DFO), we have tested a hypothesis that addition of a Fe(2+) chelator, 2,2'-dipyridyl (DP), may be more efficient and effective in preventing iron-induced oxidative damage in human liver HepG2 cells than DFO alone. Using ferrozine as an assay for iron measurement, levels of cellular iron in HepG2 cells treated with iron compounds correlated well with the extent of lipid peroxidation (r = 0.99 after log transformation). DP or DFO alone decreased levels of iron and lipid peroxidation in cells treated with iron. DFO + DP together had the most significant effect in preventing cells from lipid peroxidation but not as effective in decreasing overall iron levels in the cells. Using ESR spin trapping technique, we further tested factors that can affect oxidant-producing activity of Fe(2+) with dissolved O(2) in a cell-free system. Oxidant formation enhanced with increasing Fe(2+) concentrations and reached a maximum at 5 mM of Fe(2+). When the concentration of Fe(2+) was increased to 50 mM, the oxidant-producing activity of Fe(2+) sharply decreased to zero. The initial ratio of Fe(3+):Fe(2+) did not affect the oxidant producing activity of Fe(2+). However, an acidic pH (< 3.5) significantly slowed down the rate of the reaction. Our results suggest that reaction of Fe(2+) with O(2) is an important one for oxidant formation in biological system, and therefore, drugs capable of inhibiting redox activity of Fe(2+) should be considered in combination with a Fe(3+) chelator for iron overload chelation therapy.  相似文献   

9.
The microbial chelating compound proferrorosamine A, produced by Pseudomonas roseus fluorescens, formed a complex with Fe2+ of which the apparent stability constant was found to be 10(23). The following order of increasing stability constants of metal complexes with proferrorosamine was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was ca 32 times higher than Fe(2+)-proferrorosamine. Because of the production of proferrorosamine the growth of Ps. roseus fluorescens was not inhibited in iron limiting media by the addition of 0.15 mmol/l of the weaker chemical Fe2+ chelator 2,2'-dipyridyl. This contrasted with the proferrorosamine-negative mutant K2 and Ps. stutzeri, which only produces Fe(3+)-chelating siderophores. Furthermore, it was found that proferrorosamine was able to dissolve Fe2+ from stainless steel. These results show that proferrorosamine is a strong and selective Fe2+ chelator which could be used as an alternative for the toxic 2,2'-dipyridyl to control lactic acid fermentations.  相似文献   

10.
1. Neocuproine binding to ceruloplasmin markedly increases the chlorpromazine-ceruloplasmin-catalyzed oxidation of NADH. 2. 1,10-Phenanthroline and 2,2'-dipyridyl inhibit neocuproine activation in a competitive manner. 3. The order of enzyme chelator complex stability was: phenanthroline greater than dipyridyl greater than neocuproine.  相似文献   

11.
The iron chelator 2,2'-dipyridyl (0.2 mM) more than fourfold increased the concentration of protoporphyrin IX and also of its zinc-containing complex in mitochondria of the yeast Saccharomyces cerevisiae. Protoporphyrin IX and a chlorine derivative of protoporphyrin IX which fluoresces at 670-675 nm were found in isolated plasma membranes of the yeast grown in the presence of 0.2 mM 2,2'-dipyridyl. The accumulation of endogenous porphyrins resulted in intensification of lipid photoperoxidation in mitochondria and plasma membranes and in a dramatically increased sensitivity of the cells to visible light (400-600 nm). The relative contribution of photodestruction of subcellular structures to photoinduced cell inactivation is discussed.  相似文献   

12.
In order to study the role of metallic ions in the H2O2 inactivation of Escherichia coli cells, H2O2-sensitive mutants were treated with metal ion chelators and then submitted to H2O2 treatment. o-Phenanthroline, dipyridyl, desferrioxamine, and neocuproine were used as metal chelators. Cell sensitivity to H2O2 treatment was not modified by neocuproine, suggesting that copper has a minor role in OH production in E. coli. On the other hand, prior treatment with iron chelators protected the cells against the H2O2 lethal effect, indicating that iron participates in the production of OH. However, analysis of DNA sedimentation profiles and DNA degradation studies indicated that these chelators did not completely block the formation of DNA single-strand breaks by H2O2 treatment. Thiourea, a scavenger of OH, caused a reduction in both H2O2 sensitivity and DNA single-strand break production. The breaks observed after treatment with metal chelators and H2O2 were repaired 60 min after H2O2 elimination in xthA but not polA mutant cells. Therefore, we propose that there are at least two pathways for H2O2-induced DNA lesions: one produced by H2O2 through iron oxidation and OH production, in which lesions are repaired by the products of the xthA and polA genes, and the other produced by an iron-independent pathway in which DNA repair requires polA gene products but not those of the xthA gene.  相似文献   

13.
A 4.3-kb EcoRI fragment from a Lactococcus lactis genomic library alleviates the methyl methanesulfonate, mitomycin C, and UV sensitivities of an Escherichia coli recA mutant (M. Novel, X. F. Huang, and G. Novel, FEMS Microbiol. Lett. 72:309-314, 1990). It complements recA1 and delta recA mutations but not recA13. Three proteins (with molecular masses of 20, 35, and 23 kDa) were produced from this fragment in a T7-directed system, and three corresponding genes were detected by DNA sequencing, namely, ISS1CH;lacX, which is the distal gene of the lac operon; and a third open reading frame, named lacN, which encodes 211 amino acids. Mutations produced in either lacX or in lacN resulted in the loss of the resistance to DNA-damaging agents. Thus, these two genes appeared to be involved in this activity. Introduction of pUCB214 carrying the 4.3-kb fragment into a lexA+ delta recA306 sfiA::lacZ strain resulted in UV-inducible synthesis of beta-galactosidase. A uvrA strain or a lexA (Ind-) strain containing pUCB214 did not support any DNA repair. However, a lexA (Def-) strain carrying pUCB214 could partly repair UV damage. We discuss possible targets for LacX and LacN products, and we speculate that LacX and LacN may constitute a two-component regulatory system that is able to respond to SOS signals, and then to act in the SOS response, bypassing the RecA-activated function.  相似文献   

14.
Sodium arsenite at a non-toxic concentration was found to inhibit strongly mutagenesis induced by ultraviolet light (UV), 4-nitroquinoline-1-oxide (4NQO), furylfuramide (AF-2) and methyl methane-sulfonate (MMS) as well as spontaneous mutation in the reversion assay of E. coli WP2uvrA/pKM101. The effect was not, however, seen in the case of the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In order to elucidate the mechanism of the mutation-inhibitory effect of sodium arsenite, its action on umuC gene expression and DNA-repair systems was investigated. It was found that sodium arsenite depressed beta-galactosidase induction, corresponding to the umuC gene expression. For UV-irradiated E. coli strains possessing different DNA-repair capacities, sodium arsenite decreased the UV survival rates of WP2, WP2uvrA[uvrA] and WP67[uvrA polA], increased those of SOS-uninducible strains having either the recA+ or uvrA+ such as CM571 [recA], CM561 [lexA(Ind-)] and CM611[uvrA lexA (Ind-)], and did not affect that of the uvrA recA double mutant, WP100. From these results, we assume that sodium arsenite may have at least two roles in its antimutagenesis: as an inhibitor of umuC gene expression, and as an enhancer of the error-free repairs depending on the uvrA and recA genes.  相似文献   

15.
Wild-type cells and six DNA repair-deficient mutants (lexA, recA, recB, recA, recB, polA1, and uvrA) of Escherichia coli K-12 were treated with near-ultraviolet radiation plus hydrogen peroxide (H2O2). At low H2O2 concentrations (6 X 10(-6) to 6 X 10(-4) M), synergistic killing occurred in all strains except those containing a mutation in recA. This RecA-repairable damage was absent from stationary-phase cells but increased in logarithmic cells as a function of growth rate. At higher H2O2 concentrations (above 6 X 10(-4) M) plus near-ultraviolet radiation, all strains, including those with a mutation in recA, were synergistically killed; thus, at high H2O2 concentrations, the damage was not RecA repairable.  相似文献   

16.
Effects of vanillin on UV killing of umuC mutant strains of E. coli were investigated in order to analyze the antimutagenic role of vanillin in mutagenesis. UV-irradiated uvrA umuC cells showed higher survival when plated on medium containing vanillin rather than medium without vanillin. This increased survival associated with exposure to vanillin was observed more clearly in uvrA umuC lexA(Ind-) and uvrA umuC recF strains. However, the effect was inhibited by additional recB recC mutations and completely blocked by an additional recA mutation. As far as tested the increased survival of UV-treated cells by vanillin was dependent on a capacity for genetic recombination. The effect of vanillin on recombination frequency between 2 plasmid DNA, pATH4 (Cmr Tcs) and pBMX7 (Apr Tcs), in a uvrA umuC background was investigated. A significantly higher frequency of plasmid recombination was observed when vanillin was present in the culture medium. These findings suggest that the antimutagenic effect of vanillin is the result of enhancement of a recA-dependent, error-free, pathway of post-replication repair.  相似文献   

17.
In Escherichia coli, the repair of lethal DNA damage induced by H(2)O(2) requires exonuclease III, the xthA gene product. Here, we report that both endonuclease IV (the nfo gene product) and exonuclease III can mediate the repair of lesions induced by H(2)O(2) under low-iron conditions. Neither the xthA nor the nfo mutants was sensitive to H(2)O(2) in the presence of iron chelators, while the xthA nfo double mutant was significantly sensitive to this treatment, suggesting that both exonuclease III and endonuclease IV can mediate the repair of DNA lesions formed under such conditions. Sedimentation studies in alkaline sucrose gradients also demonstrated that both xthA and nfo mutants, but not the xthA nfo double mutant, can carry out complete repair of DNA strand breaks and alkali-labile bonds generated by H(2)O(2) under low-iron conditions. We also found indications that the formation of substrates for exonuclease III and endonuclease IV is mediated by the Fpg DNA glycosylase, as suggested by experiments in which the fpg mutation increased the level of cell survival, as well as repair of DNA strand breaks, in an AP endonuclease-null background.  相似文献   

18.
The ability of plasmid R46 to reduce the lethal but enhance the mutagenic effect of ultraviolet (UV) irradiation was tested in sets of Escherichia coli K-12 derivatives, wild type or with different mutations affecting DNA repair capacity, but otherwise isogenic. UV protection and enhancement of UV mutagenic effect were obtained in uvrA6, uvrB5, uvrD3, and recF143 hosts, but not in a recA56 strain. The plasmid gave some UV protection in two lexA1 and two lexA101 strains and in one lexA102 host, but produced no such effect in another lexA102 host. The plasmid restored UV mutagenic effect in a lexB30 strain, the yield of induced mutants per survivor of irradiation (10 J/m2) being about the same for the lexB30(R46) and lex+(R46) strains; by contrast the plasmid, though it reduced the UV sensitivity of the lexB30 strain, did not make it as UV-resistant as the lex+ R-strain.  相似文献   

19.
Introduction of the R-factor plasmid pKM101 increased resistance to UV-killing in uvr lexA(Ind-) recA+ strains of E. coli K12 as well as B, while their UV mutability was not affected. Similar effects were also observed in those strains when the 18-B plasmid (a pBR322 derivative carrying the region (about 5 kb) of the 35.4 kb pKM101 plasmid) was introduced. The muc genes which are considered to be involved in error-prone repair are contained in 18-B. These results suggest the possibility that the pKM101 effect requires the host recA gene and a common genetic region, including the muc genes, in both plasmids and is associated with some unmutable repair systems.  相似文献   

20.
To evaluate the importance of RecA in DNA double-strand break (DSB) repair, we examined the effect of low and high RecA concentrations such as 2500 and 100 000 molecules per cell expressed from the inducible Pspac promoter in Deinococcus radiodurans in absence or in presence of IPTG respectively. We showed that at low concentration, RecA has a negligible effect on cell survival after gamma-irradiation when bacteria were immediately plated on TGY agar whereas it significantly decreased the survival to gamma-irradiation of DeltaddrA cells while overexpression of RecA can partially compensate the loss of DdrA protein. In contrast, when cells expressing limited concentration of RecA were allowed to recover in TGY2X liquid medium, they showed a delay in mending DSB, failed to reinitiate DNA replication and were committed to die during incubation. A deletion of irrE resulted in sensitivity to gamma-irradiation and mitomycin C treatment. Interestingly, constitutive high expression of RecA compensates partially the DeltairrE sensitization to mitomycin C. The cells with low RecA content also failed to cleave LexA after DNA damage. However, neither a deletion of the lexA gene nor the expression of a non-cleavable LexA(Ind-) mutant protein had an effect on survival or kinetics of DNA DSB repair compared with their lexA+ counterparts in recA+ as well as in bacteria expressing limiting concentration of RecA, suggesting an absence of relationship between the absence of LexA cleavage and the loss of viability or the delay in the kinetics of DSB repair. Thus, LexA protein seems to play no major role in the recovery processes after gamma-irradiation in D. radiodurans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号