首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated from the yeast Candida maltosa microsomal membranes that are active in the translocation of proteins synthesized in cell-free systems derived from C. maltosa, Saccharomyces cerevisiae or wheat germ. Translocation and core glycosylation of prepro-alpha-factor, a secretory protein, were observed with yeast microsomes added during or after translation. The signal peptide is cleaved off. Cytochrome P-450 from C. maltosa, the first integral membrane protein studied in a yeast system, is also inserted both co- and post-translationally into Candida microsomal membranes. Its insertion into canine microsomes occurs efficiently only in a co-translational manner and is dependent on the function of the signal recognition particle.  相似文献   

2.
We developed an in vitro translation extract from Krebs-2 cells that translates the entire open reading frame of the hepatitis C virus (HCV) strain H77 and properly processes the viral protein precursors when supplemented with canine microsomal membranes (CMMs). Translation of the C-terminal portion of the viral polyprotein in this system is documented by the synthesis of NS5B. Evidence for posttranslational modification of the viral proteins, the N-terminal glycosylation of E1 and the E2 precursor (E2-p7), and phosphorylation of NS5A is presented. With the exception of NS3, efficient generation of all virus-specific proteins is CMM dependent. A time course of the appearance of HCV products indicates that the viral polyprotein is cleaved cotranslationally. A competitive inhibitor of the NS3 protease inhibited accumulation of NS3, NS4B, NS5A, and NS5B, but not that of NS2 or structural proteins. CMMs also stabilized HCV mRNA during translation. Finally, the formyl-[35S]methionyl moiety of the initiator tRNA(Met) was incorporated exclusively into the core protein portion of the polyprotein, demonstrating that translation initiation in this system occurs with high fidelity.  相似文献   

3.
4.
Myelin basic protein (MBP) and P2 protein are small positively charged proteins found in oligodendrocytes of rabbit spinal cord. Both proteins become incorporated into compact myelin. We have begun investigations into the mechanisms by which MBP and P2 become incorporated into the myelin membrane. We find that P2, like the MBPs, is synthesized on free polysomes in rabbit spinal cord. Cell fractionation experiments reveal that rabbit MBP mRNAs are preferentially segregated to the peripheral myelinating regions whereas P2 mRNAs are predominantly localized within the perikaryon of the cell. In vitro synthesized rabbit MBP readily associates with membranes added to translation mixtures, whereas P2 protein does not. It is possible that P2 requires a "receptor" molecule, perhaps a membrane-anchored protein, for association with the cytoplasmic face of the myelin membrane.  相似文献   

5.
To examine the relationship between pre-protein cleavage and nascent chain glycosylation placental mRNA was translated in a reconstituted ascites cell-free system containing microsomal membranes prepared from tunicamycin-treated or untreated ascites tumor cells. In the absence of membranes, first trimester RNA directed the synthesis of the pre-form of the alpha subunit of human chorionic gonadotropin, whereas, in the presence of normal membranes, first trimester RNA directed the synthesis of a glycosylated form of the alpha subunit. Cell-free lysates containing membranes derived from tunicamycin-treated cells synthesized an alpha subunit protein with little, if any, carbohydrate. This protein was apparently sequestered into membranes since it was resistant to the action of trypsin which was added after translation. The pre-peptide of the alpha subunit protein was removed by treated membranes as determined by amino acid sequence analyses. The non-glycosylated protein pre-placental lactogen was also cleaved to its mature form by tunicamycin membranes. These data strongly suggest that, in vitro, glycosylation is not obligatory for pre-protein cleavage and sequestration of these placental protein hormones.  相似文献   

6.
We assessed inhibitors of glycosylation by simultaneous determination of [14C]Gal incorporated into glycosphingolipids and glycoproteins as well as of [3H]Leu incorporated into proteins of intact cells. After metabolic labeling in 96-well plates in the presence or absence of a test substance, cells were collected on glass-fiber filters. The lipid components were extracted from the filter and radioactivities of both extract and filter determined. The reliability of the procedure was tested with different drugs. Using the glucocerebroside synthetase inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP; 5 microM), glycolipid biosynthesis was shown to be reduced to 50% in the murine T-cell EL-4 6.1 line, whereas glycosylation of proteins was not disturbed. With 0.5 microM tunicamycin, the glycosylation of proteins was 50% of that in the control. The procedure was also able to detect various specific effects: the inhibition of protein glycosylation with D-glucosamine and castanospermine, the inhibition of glycosphingolipid biosynthesis with L-cycloserine, and a slight enhancement of glycosphingolipid biosynthesis with conduritol B epoxide and castanospermine. Within a series of N-acyl homologs of PDMP the inhibitory potency increased with chain length. In contrast, these homologs were equipotent by enzymatic in vitro assays.  相似文献   

7.
We demonstrate here translation, glycosylation, and membrane insertion of the beta-subunit of the Na+/K+-ATPase of the developing brine shrimp, Artemia, in a reticulocyte lysate translation system. The apparent molecular weight of the primary translation product as determined by SDS-PAGE is 33,000 +/- 1000 (n = 7). When microsomal membranes are present during the entire translation period, a new band with an apparent molecular weight of 37,000 +/- 1000 (n = 7) appears. This change in apparent molecular weight is due to the addition of about two N-linked oligosaccharides. The temporal relationship between protein synthesis and glycosylation have also been examined. Glycosylation and membrane insertion could be achieved if membranes were added after completion of about 70% of the peptide chain. However, glycosylation did not occur if membranes were added after the completion of translation of the beta-subunit. The beta-subunit was synthesized on membrane-bound polysomes, where about two N-linked oligosaccharides were added to the growing polypeptide chain. These studies demonstrate that in vitro translation systems will be useful for studying the biosynthesis of the beta-subunit of the brine shrimp, which is a good model system to examine the developmental regulation of the Na+/K+-ATPase.  相似文献   

8.
Poliovirus protein 3A, only 87 amino acids in length, is a potent inhibitor of protein secretion in mammalian cells, blocking anterograde protein traffic from the endoplasmic reticulum (ER) to the Golgi complex. The function of viral protein 3A in blocking protein secretion is extremely sensitive to mutations near the N terminus of the protein. Deletion of the first 10 amino acids or insertion of a single amino acid between amino acids 15 and 16, a mutation that causes a cold-sensitive defect in poliovirus RNA replication, abrogates the inhibition of protein secretion although wild-type amounts of the mutant proteins are expressed. Immunofluorescence light microscopy and immunoelectron microscopy demonstrate that 3A protein, expressed in the absence of other viral proteins, colocalizes with membranes derived from the ER. The precise topology of 3A with respect to ER membranes is not known, but it is likely to be associated with the cytosolic surface of the ER. Although the glycosylation of 3A in translation extracts has been reported, we show that tunicamycin, under conditions in which glycosylation of cellular proteins is inhibited, has no effect on poliovirus growth. Therefore, glycosylation of 3A plays no functional role in the viral replicative cycle. Electron microscopy reveals that the ER dilates dramatically in the presence of 3A protein. The absence of accumulated vesicles and the swelling of the ER-derived membranes argues that ER-to-Golgi traffic is inhibited at the step of vesicle formation or budding from the ER.  相似文献   

9.
The putative anion channel mCLCA3 (alias gob-5) is the third murine member of the recently discovered family of calcium-activated chloride channels (CLCA family). Preliminary data suggest that mCLCA3 may play a significant role in diseases with secretory dysfunctions, including asthma and cystic fibrosis. In this study, the mCLCA3 protein was characterized biochemically and its cellular and subcellular distribution pattern was established in normal murine tissues. Polyclonal rabbit antibodies were generated and affinity-immunopurified using synthetic oligopeptides corresponding to the extracellular amino terminus of the mCLCA3 polypeptide. After in vitro translation and glycosylation, proteinase K protection assay, and heterologous expression in COS-7 or HEK 293 cells, SDS-PAGE and immunoblotting revealed a protein structure similar to that of previously characterized CLCA proteins. A systematic light, confocal laser scanning, and transmission electron microscopic immunolocalization study, including virtually all murine tissues, identified the mCLCA3 protein exclusively associated with mucin granule membranes of gastrointestinal, respiratory, and uterine goblet cells and other mucin-producing cells. The results suggest that mCLCA3 may be involved in the synthesis, condensation, or secretion of mucins.  相似文献   

10.
We describe an in vitro system with all components derived from the yeast Saccharomyces cerevisiae that can translocate a yeast secretory protein across microsomal membranes. In vitro transcribed prepro-alpha-factor mRNA served to program a membrane-depleted yeast translation system. Translocation and core glycosylation of prepro-alpha-factor were observed when yeast microsomal membranes were added during or after translation. A membrane potential is not required for translocation. However, ATP is required for translocation and nonhydrolyzable analogues of ATP cannot serve as a substitute. These findings suggest that ATP hydrolysis may supply the energy required for translocation of proteins across the endoplasmic reticulum.  相似文献   

11.
A common T17A polymorphism in the signal peptide of the cytotoxic T-lymphocyte antigen 4 (CTLA-4), a T-cell receptor that negatively regulates immune responses, is associated with risk for autoimmune disease. Because the polymorphism is absent from the mature protein, we hypothesized that its biological effect must involve early stages of protein processing, prior to signal peptide cleavage. Constructs representing the two alleles were compared by in vitro translation, in the presence of endoplasmic reticulum membranes. We studied glycosylation by endoglycosidase H digestion and glycosylation mutant constructs, cleavage of peptide with inhibitors, and membrane integration by ultracentrifugation and proteinase K sensitivity. A major cleaved and glycosylated product was seen for both alleles of the protein but a band representing incomplete glycosylation was markedly more abundant in the predisposing Ala allele (32.7 +/- 1.0 versus 10.6% +/- 1.2 for Thr, p < 10(-9)). In addition, differential intracellular/surface partitioning was studied with co-transfection of the alleles fused to distinct fluorescent proteins in COS-1 cells. By quantitative confocal microscopy we found a higher ratio of cell surface/total CTLAThr(17) versus CTLAAla(17) (p = 0.01). Our findings corroborate observations, in other proteins, that the signal peptide can determine the efficiency of post-translational modifications other than cleavage and suggest inefficient processing of the autoimmunity predisposing Ala allele as the explanation for the genetic effect.  相似文献   

12.
《The Journal of cell biology》1984,99(6):2247-2253
A preparation of rat liver microsomes containing 70% of the total cellular endoplasmic reticulum (ER) membranes was subfractionated by isopycnic density centrifugation. Twelve subfractions of different ribosome content ranging in density from 1.06 to 1.29 were obtained and analyzed with respect to marker enzymes, RNA, and protein content, as well as the capacity of these membranes to bind 80S ribosomes in vitro. After removal of native polysomes from these microsomal subfractions by puromycin in a buffer of high ionic strength their capacity to rebind 80S ribosomes approached levels found in the corresponding native membranes before ribosome stripping. This indicates that in vitro rebinding of ribosomes occurs to the same sites occupied in the cell by membrane-bound polysomes. Microsomes in the microsomal subfractions were also tested for their capacity to effect the translocation of nascent secretory proteins into the microsomal lumen utilizing a rabbit reticulocyte translation system programmed with mRNA coding for the precursor of human placental lactogen. Membranes from microsomes with the higher isopycnic density and a high ribosome content showed the highest translocation activity, whereas membranes derived from smooth microsomes had only a very low translocation activity. These results indicate the membranes of the rough and smooth portions of the endoplasmic reticulum are functionally differentiated so that sites for ribosome binding and the translocation of nascent polypeptides are segregated to the rough domain of the organelle.  相似文献   

13.
To understand better the structural requirements of the protein moiety important for N-glycosylation, we have examined the influence of proline residues with respect to their position around the consensus sequence (or sequon) Asn-Xaa-Ser/Thr. In the first part of the paper, experiments are described using a cell-free translation/glycosylation system from reticulocytes supplemented with dog pancreas microsomes to test the ability of potential acceptor peptides to interfere with glycosylation of nascent yeast invertase chains. It was found that peptides, being acceptors for oligosaccharide transferase in vitro, inhibit cotranslational glycosylation, whereas nonacceptors have no effect. Acceptor peptides do not abolish translocation of nascent chains into the endoplasmic reticulum. Results obtained with proline-containing peptides are compatible with the notion that a proline residue in an N-terminal position of a potential glycosylation site does not interfere with glycosylation, whereas in the position Xaa or at the C-terminal of the sequon, proline prevents and does not favour oligosaccharide transfer, respectively. This statement was further substantiated by in vivo studies using site-directed mutagenesis to introduce a proline residue at the C-terminal of a selected glycosylation site of invertase. Expression of this mutation in three different systems, in yeast cells, frog oocytes and by cell-free translation/glycosylation in reticulocytes supplemented with dog pancreas microsomes, leads to an inhibition of glycosylation with both qualitative and quantitative differences. This may indicate that host specific factors also contribute to glycosylation.  相似文献   

14.
The intracellular sites of biosynthesis of the structural proteins of murine hepatitis virus A59 have been analyzed using cell fractionation techniques. The nucleocapsid protein N is synthesized on free polysomes, whereas the envelope glycoproteins E1 and E2 are translated on the rough endoplasmic reticulum (RER). Glycoprotein E2 present in the RER contains N-glycosidically linked oligosaccharides of the mannose-rich type, supporting the concept that glycosylation of this protein is initiated at the co-translational level. In contrast, O-glycosylation of E1 occurs after transfer of the protein to smooth intracellular membranes. Monensin does not interfere with virus budding from the membranes of the endoplasmic reticulum, but it inhibits virus release and fusion of infected cells. The oligosaccharide side chains of E2 obtained under these conditions are resistant to endoglycosidase H and lack fucose suggesting that transport of this glycoprotein is inhibited between the trans Golgi cisternae and the cell surface. Glycoprotein E1 synthesized in the presence of monensin is completely carbohydrate-free. This observation suggests that the intracellular transport of this glycoprotein is also blocked by monensin.  相似文献   

15.
Nonglycosylated murine and human granulocyte-macrophage colony-stimulating factor have a molecular mass of approximately 14.5 kDa predicted from the primary amino acid sequence. The expression of both proteins in COS cells leads to a heterogeneous population of molecules that differ in the degree of glycosylation. Both human and murine molecules contain two N-linked glycosylation sites that are situated in nonhomologous locations along the linear sequence. Despite this difference both proteins show a similar size distribution among the glycosylation variants. These studies analyze the effects of introducing in the murine protein novel N-linked glycosylation sites corresponding to those sites found in the human molecule. A panel of molecules composed of various combinations of human N-linked glycosylation sites in either the presence or the absence of murine N-linked glycosylation was compared. Substitution of a proper human N-linked glycosylation consensus sequence at Asn 24 did not result in N-linked glycosylation, nor was there any considerable effect on bioactivity. Replacement of the N-linked glycosylation consensus sequence at Asn 34 results in glycosylation similar to that found in the human molecule and causes a significant decrease in bioactivity. These data suggest that the position of N-linked glycosylation is critical for maximal bioactivity in a particular species and that the changes in position of these sites in different species probably occurred during evolution in response to changes in their receptors.  相似文献   

16.
J E Rothman  F N Katz  H F Lodish 《Cell》1978,15(4):1447-1454
The membrane glycoprotein of vesicular stomatitis virus (VSV), synthesized in vitro in the presence of pancreatic microsomes, is glycosylated in two distinct steps while its polypeptide chain is nascent (Rothman and Lodish, 1977). We show here that unglycosylated glycoprotein, which accumulates in vivo following treatment of cells with tunicamycin and in vitro as a result of translation in the presence of detergent-treated microsomal membranes, is inserted normally as a transmembrane protein. This means that glycosylation, while normally occurring concurrently with insertion, is not required for insertion. Our experiments also show that the two steps in glycosylation correspond to the sequential transfer of preformed “core” oligosaccharides of typical structure to two Asn residues in the growing chain. The accumulation of unglycosylated glycoprotein in vitro is due to the fact that the completed transmembrane polypeptide cannot be glycosylated. The detergent treatment of microsomes impairs their rate of glycosylation so that chains are frequently completed before they can be glycosylated. This provides a simple explanation for certain types of heterogeneity often found in glycoproteins. We believe that the detergent treatment procedure results in the solubilization of the microsomal membrane followed by reconstitution. This is a prerequisite for the eventual purification of the membrane proteins and lipids involved in insertion and glycosylation of this model membrane protein.  相似文献   

17.
Reversible glycosylated polypeptides (RGPs) are highly conserved plant-specific proteins, which can perform self-glycosylation. These proteins have been shown essential in plants yet its precise function remains unknown. In order to understand the function of this self-glycosylating polypeptide, it is important to establish what factors are involved in the regulation of the RGP activity. Here we show that incubation at high ionic strength produced a high self-glycosylation level and a high glycosylation reversibility of RGP from Solanum tuberosum L. In contrast, incubation at low ionic strength led to a low level of glycosylation and a low glycosylation reversibility of RGP. The incubation at low ionic strength favored the formation of high molecular weight RGP-containing forms, whereas incubation at high ionic strength produced active RGP with a molecular weight similar to the one expected for the monomer. Our data also showed that glycosylation of RGP, in its monomeric form, was highly reversible, whereas, a low reversibility of the protein glycosylation was observed when RGP was part of high molecular weight structures. In addition, glycosylation of RGP increased the occurrence of non-monomeric RGP-containing forms, suggesting that glycosylation may favor multimer formation. Finally, our results indicated that RGP from Arabidopsis thaliana and Pisum sativum are associated to golgi membranes, as part of protein complexes. A model for the regulation of the RGP activity and its binding to golgi membranes based on the glycosylation of the protein is proposed where the sugars linked to oligomeric form of RGP in the golgi may be transferred to acceptors involved in polysaccharide biosynthesis.  相似文献   

18.
19.
A very close similarity in molecular, steroid-binding and immunological properties have been demonstrated for the sex steroid-binding proteins of plasma from human (hSBP) and monkey (mSBP): both are glycoproteins composed of two similar subunits able to bind one steroid molecule and to cross-react with the same antibodies. After translation of human and monkey (Macaca fascicularis) liver mRNAs by a wheat-germ embryo extract, in the presence of labelled amino-acids, we have characterized in both cases a single radioactive polypeptide immunologically related to SBP, migrating in SDS-PAGE as a single band and having a molecular weight of about 42,000. This protein could be displaced from the antibody by pure unlabelled SBP in excess. The difference in molecular weight between the in vitro translation product and the native SBP sub-unit is probably due to the absence of glycosylation in the neo-synthesized protein. The radioactivity incorporated into mSBP was 4 times higher than the radioactivity incorporated into hSBP, suggesting that the amount of mRNA for SBP is higher in monkey than in human liver. Our results show that the two sub-units of hSBP and mSBP derive from a common precursor, representing respectively 0.0050% and 0.0013% of the total neosynthesized proteins in monkey and in human liver.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号