首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DAVID I. KING  JOHN H. RAPPOLE 《Ibis》2001,143(4):380-390
We studied the bird community in deciduous, dipterocarp forest of north-central Burma (Myanmar) during December 1994, March 1996, and January 1997 and 1999. Most members of this community participated in mixed-species flocks. Seventy-three flocks were encountered during our study, containing 52 species. Of these, 25 species occurred in more than 10% of flocks, and were included in our analyses. There were 26 significant correlations among species pairs, 25 of which were positive. Cluster analysis indicated that there were three principal types of flocks: one consisting mostly of small passerines and picids, commonly including Common Wood-Shrike, Small Minivet and White-browed Fantail, among others; a second type consisting mainly of sylviids, e.g. Arctic, Dusky and Radde's Warblers; and a third type which generally centred around Greater and Lesser Necklaced Laughingthrushes. Bird-eating hawks were numerous at these sites, and we witnessed several attacks on flocks during the study. Thus we infer that enhanced protection from predation is an important benefit conferred by flock membership. In contrast, there was little overlap in foraging behaviour among species, suggesting that foraging facilitation is a relatively minor benefit enjoyed by flock members, although we did observe White-browed Fantails and Greater Racket-tailed Drongos kleptoparasitizing other species on occasion.  相似文献   

2.
3.
Beauchamp G 《Oecologia》2007,154(2):403-409
I examined the effect of competitor density on foraging success in staging semipalmated sandpipers (Calidris pusilla) foraging on a burrowing amphipod (Corophium volutator) in each of two study years. Little is known about the effect of competitor density when predation attempts disturb prey, causing a temporary decrease in food availability. Controlling for Corophium density and other potentially confounding factors such as temperature, pecking rate and capture rate increased linearly with sandpiper density. Success rate, the ratio of captures to pecks, was not influenced by sandpiper density. The effect of sandpiper density was similar in each of the two study years and was documented early and late in the low tide period. The increase in foraging rate is argued to be a response to increased competition for rapidly depleting prey at the temporal scale of exploitation by a flock. Potential fitness costs associated with higher foraging costs may include decreased ability to distinguish between the profitability of different prey and reduced vigilance against predators.  相似文献   

4.
5.
This study reports on the biocontrol role birds play in caterpillar pest control of tea plantations of Northeast India. In this area large tracts of tea plantations have been extensively defoliated by the recent invasion of two forest-dwelling geometrid looper caterpillars, Hyposidra spp. and a lymantriid hairy caterpillar, Arctornis submarginata. This exacerbated tea herbivory by two resident pest caterpillars, Biston suppressaria and Eterusia magnifera. Currently there are no identified resident insect predators for any life stage of Hyposidra spp. and A. submarginata. Larvae of these pests drop from tea bushes using salivary thread, allowing caterpillars to escape from insect predators. The study identified 38 native insectivorous bird species in tea plantations, of which four species (Asian-pied starling, Chestnut-tailed starling, Jungle Myna, Red-vented Bulbul) could be potential control agents of looper and hairy caterpillar pests. These species had high population densities. Their cumulative abundances represented a major proportion of the total bird community during both the infested (86.44%) and non-infested phase (75.34%). They foraged in mixed-species flocks in both tea foliage and on the ground. This behavior is suited to capture foliage-living and dropped caterpillars that were flushed from tea bushes by foraging birds. Abundance and species richness of overall tea layer-foraging birds were higher in infested phase when compared to non-infested phase. The predation rate of four bird species of the foraging flock varied significantly. These results suggest that birds should be considered as important biological control agent of caterpillar pests of tea and considered in pest management plans.  相似文献   

6.
In group‐foraging species with no alarm signals, the sudden departure of neighbours can be used to inform the rest of the group about the detection of a threat. However, sudden departures are ambiguous because they can be triggered by factors unrelated to predator detection. We evaluated how animals react to the sudden departure of neighbours in groups of foraging house sparrows (Passer domesticus). We focussed on false alarms that occurred for no apparent reasons to us because predation attempts were not frequent. Three factors can explain how the sudden departure of a neighbour can influence reaction times, namely group size, the distance between neighbours, and predation risk. We predicted reaction times to be longer in larger groups where individual vigilance levels are low, and when group members are further apart and cannot easily monitor each other. In addition, we expected reaction times to be longer when predation risk is lower. Departures that are more temporally clumped are also expected to be less ambiguous and should trigger faster reaction times. Our results show that sparrows reacted faster, not more slowly, to the sudden departures of neighbours in larger groups, and, as predicted, more slowly when neighbours were more distant from each other. Reaction times were longer in one of the two study years in which predation risk was deemed lower. Sparrows reacted more quickly when earlier departures were more temporally clumped. The results thus provided partial support for the predictions, and future work is needed to assess how individuals react to fleeing responses by their neighbours in species with no alarm signals.  相似文献   

7.
Group foraging allows for individuals to exploit the food discoveriesof other group members. If searching for food and searchingfor exploitation opportunities within a group are mutually exclusivealternatives, the decision to use one or the other is modeledas a producer-scrounger game because the value of each alternativeis frequency dependent. Stochastic producer-scrounger modelsgenerally assume that producer provides a more variable anduncertain reward than does the scrounger and hence is a riskierforaging alternative. Socially foraging animals that are attemptingto reduce their risk of starvation should therefore alter theiruse of producer and scrounger alternatives in response to changesin energy budget. We observed flocks of nutmeg mannikins (L.punctulata) foraging in an indoor aviary to determine whethertheir use of producer and scrounger alternatives were risk sensitive.Analyses of the foraging rewards of three flocks of seven birdsconfirm that producer is a riskier foraging strategy than isscrounger, although the difference in risk is rather small.We then submitted two other flocks to two different energy budgetsand observed the foraging decision of four focal birds in eachflock. All but one bird increased their relative use of theriskier producer strategy in the low food reserve treatment,but the overall use of producer did not differ significantlybetween treatments, providing evidence for a small but consistenteffect.  相似文献   

8.
A field experiment was carried out to determine whether group-foragingstarlings (Sturnus vulgaris) use public information to helpthem estimate the quality of an artificial resource patch anddepart accordingly. Three kinds of information are potentiallyavailable in a group: patch-sample information, pre-harvestinformation, and public information. These three types of informationcan be combined into four patch assessment strategies: (1) patch-samplealone; (2) patch-sample and pre-harvest; (3) patch-sample andpublic; and (4) patch-sample, pre-harvest, and public. Dependingon the foraging environment we presented to the starlings, eachassessment strategy made a unique set of predictions concerningthe patch departure decisions of pairs of birds based on differencesin their foraging success. The environment was manipulated intwo ways: by altering the variability in patch quality and bychanging compatibility, the ease with which individual birdscould simultaneously acquire both patch-sample and public information.Our observations on patch persistence and departure order demonstratethat the starlings used a combination of patch-sample and publicinformation, but not pre-harvest information, to estimate thequality of the experimental patch. Moreover, our results suggestthat starlings use public information only when it is easilyavailable and ignore it under incompatible conditions. Thisstudy provides the first evidence of public information usein a patch assessment problem.  相似文献   

9.
Mixed-species flocks of forest living birds were investigated in a rainforest at Perinet/ Analamazaotra (Andasibe), Madagascar. Most insectivorous birds in the area participated in mixed-species flocks. Flocks were composed of foliage gleaners, foliage-branch gleaners, trunk gleaners and flycatchers. Species whose foraging techniques and foraging locations in vegetation were similar were different from each other in foraging heights. The nuclear species often occurred in small conspecific flocks in and out of mixed-species flocks.  相似文献   

10.
Thirty-two species were recorded in mixed-species bird flocks led by the Grey-cheeked Fulvetta Alcippe morrisonia in Fushan Experimental Forest, Taiwan. Flocks averaged (± se) 5.8 ± 0.2 species and 51.4 ± 2.7 birds. Most participants were resident species (86.3%), some were elevational migrants (12.6%) and a few were latitudinal migrants (1.1%). Flock size was determined primarily by the abundance of Grey-cheeked Fulvettas, the most abundant species (68.1%). Flocks moved at an average rate of 10.8 ± 0.7 m/min, with larger flocks moving faster than smaller flocks. In moving flocks, canopy species were usually near the front, while understorey species usually followed. Fulvettas gave higher-intensity alarm calls and dived down more frequently in response to avian threats, especially raptors, than to non-avian threats. The overall foraging niche-breadth of the fulvetta was greater than that of any attendant species. Each species in a flock had a unique foraging niche. Most attendant species exhibited low foraging niche-overlap with the Grey-cheeked Fulvetta. Both the predator avoidance and the foraging efficiency hypotheses for mixed-species flocking were supported. The Grey-cheeked Fulvetta plays a critical role in the function of mixed-species flocks. A large flock formed around the Grey-cheeked Fulvetta provides attendant species with numerous opportunities for obtaining food and protection from predators.  相似文献   

11.
12.
Social interactions are rarely random. In some instances, animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics, respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here, we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co‐occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission–fusion dynamics), at 60 feeding sites. Of the 1,711 birds in those flocks, we genotyped 962 individuals at 4,701 autosomal single nucleotide polymorphisms (SNPs). By combining genomewide genotyping with repeated field observations of the same individuals, we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission–fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27%–45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genomewide heterophily for pure social (i.e., space‐independent) grouping preferences. Genomewide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure.  相似文献   

13.
A total of 134 bird species were recorded at Jianfengling, Hainan Island, in China from May 2000 to September 2004, of which 44 participated in one or more of 134 mixed‐species flocks. These flocks averaged 3.8 ± 0.2 species and 20.3 ± 1.2 individuals. Flocking propensity in a given species ranged from 1.5 to 100%. For flocking species, frequency of flocking and number of individuals in flocks was positively correlated with frequency and number in point counts. Among all species pairs with flocking frequency above 5%, cluster and correlation analysis indicated there were two principal groups of flocking birds – canopy species and understorey species: associations were positive within a group, but negative between groups. Canopy birds had a higher flocking propensity than understorey birds. They also made significantly less use of inner branches and trunks and greater use of middle branches, and foraged at a significantly greater height when in mixed‐species flocks than when solitary. For understorey bird species, there were no significant differences in foraging locations between solitary and mixed‐species flocks. Higher flocking frequency occurred in the wet season for canopy birds, but in the dry season for understorey birds. Overall patterns were consistent with the explanation that flocking enables an expansion of foraging niche by reducing the risk of predation.  相似文献   

14.
Search behavior is often used as a proxy for foraging effort within studies of animal movement, despite it being only one part of the foraging process, which also includes prey capture. While methods for validating prey capture exist, many studies rely solely on behavioral annotation of animal movement data to identify search and infer prey capture attempts. However, the degree to which search correlates with prey capture is largely untested. This study applied seven behavioral annotation methods to identify search behavior from GPS tracks of northern gannets (Morus bassanus), and compared outputs to the occurrence of dives recorded by simultaneously deployed time–depth recorders. We tested how behavioral annotation methods vary in their ability to identify search behavior leading to dive events. There was considerable variation in the number of dives occurring within search areas across methods. Hidden Markov models proved to be the most successful, with 81% of all dives occurring within areas identified as search. k‐Means clustering and first passage time had the highest rates of dives occurring outside identified search behavior. First passage time and hidden Markov models had the lowest rates of false positives, identifying fewer search areas with no dives. All behavioral annotation methods had advantages and drawbacks in terms of the complexity of analysis and ability to reflect prey capture events while minimizing the number of false positives and false negatives. We used these results, with consideration of analytical difficulty, to provide advice on the most appropriate methods for use where prey capture behavior is not available. This study highlights a need to critically assess and carefully choose a behavioral annotation method suitable for the research question being addressed, or resulting species management frameworks established.  相似文献   

15.
Systematic, operational, long‐term observations of the terrestrial carbon cycle (including its interactions with water, energy and nutrient cycles and ecosystem dynamics) are important for the prediction and management of climate, water resources, food resources, biodiversity and desertification. To contribute to these goals, a terrestrial carbon observing system requires the synthesis of several kinds of observation into terrestrial biosphere models encompassing the coupled cycles of carbon, water, energy and nutrients. Relevant observations include atmospheric composition (concentrations of CO2 and other gases); remote sensing; flux and process measurements from intensive study sites; in situ vegetation and soil monitoring; weather, climate and hydrological data; and contemporary and historical data on land use, land use change and disturbance (grazing, harvest, clearing, fire). A review of model–data synthesis tools for terrestrial carbon observation identifies ‘nonsequential’ and ‘sequential’ approaches as major categories, differing according to whether data are treated all at once or sequentially. The structure underlying both approaches is reviewed, highlighting several basic commonalities in formalism and data requirements. An essential commonality is that for all model–data synthesis problems, both nonsequential and sequential, data uncertainties are as important as data values themselves and have a comparable role in determining the outcome. Given the importance of data uncertainties, there is an urgent need for soundly based uncertainty characterizations for the main kinds of data used in terrestrial carbon observation. The first requirement is a specification of the main properties of the error covariance matrix. As a step towards this goal, semi‐quantitative estimates are made of the main properties of the error covariance matrix for four kinds of data essential for terrestrial carbon observation: remote sensing of land surface properties, atmospheric composition measurements, direct flux measurements, and measurements of carbon stores.  相似文献   

16.
Recent research has clearly shown that the fear of predation, i.e. aversion to taking risks, among mesopredators or grazers, and not merely flight from an apex predator to avoid predation, is an important aspect of ecosystem structuring. In only a few, though well-documented cases, however, has this been considered in the marine environment. Herein, we review studies that have quantified behavioral responses of Adélie penguins Pygoscelis adeliae and emperor penguins Aptenodytes forsteri to the direct presence of predators, and question why the penguins avoid entering or exiting the water at night. We also show, through literature review and new analyses of Adélie penguin diving data, that Antarctic penguins are capable of successful prey capture in the dark (defined here as <3.4 lux). Finally, we summarize extensive data on seasonal migration relative to darkness and prey availability. On the basis of our findings, we propose that penguins’ avoidance of foraging at night is due to fear of predation, and not to an inability to operate effectively in darkness. We further propose that, at polar latitudes where darkness is more a seasonal than a year-round, daily feature, this “risk aversion” affects migratory movements in both species, consistent with the “trade-off” hypothesis seen in other marine vertebrates weighing foraging success against predation risk in their choice of foraging habitat. Such non-consumptive, behavioral aspects of species interactions have yet to be considered as important in Southern Ocean food webs, but may help to explain enigmatic movement patterns and choice of foraging grounds in these penguin species.  相似文献   

17.
Five species of diurnal primates in the Kibale Forest of western Uganda— red colobus (Colobus badius),black- and- white colobus (Colobus guereza),redtail monkeys (Cercopithecus ascanius),blue monkeys (Cercopithecus mitis),mangabeys (Cercocebus albigena)-often associate in mixed- species groups that vary in size and composition from day to day. Across this range of species, we found no consistent effect of association on feeding rate. In addition, there is no systematic difference between the species- specific individual feeding rates when animals were in mixed- species groups feeding in a specific tree on one day and when individuals of one of the same species were feeding in the same individual tree on a subsequent day. If associating in a mixed- species group lowers the risk of predation, one might expect that the number of vigilant events would decrease in mixed- species groups. However, the only species to exhibit a consistent decrease in vigilant behavior when in association was the red colobus. Redtail monkeys were more vigilant when in association. We predicted that the density and distribution of food resources would both constrain the frequency of association and the size of mixed- species groups. Based on 22 months of data on food resources and bimonthly censuses, we found no relationship between the frequency of association (except mangabeys) or mean mixed- species group size and the density and distribution of food resources for all species. Finally, we examined the behavior of the monkeys in and out of association before and after the playback of a crowned hawk eagle call (Spizaetus coronatus),a known predator. When more species were in association, the amount of time they spent being vigilant following the playback was greater and the response more intense than when fewer species were in association or when the group was alone. The results of this study illustrate that the nature of the costs and benefits of polyspecific associations for these different monkey species are complex and vary from species to species.  相似文献   

18.

Research Notes on Avian Biology 1994: Selected Contributions from the 21st International Ornithological CongressBehavior: Foraging

Subject: foraging  相似文献   

19.
Studies of foraging behaviour have proliferated over the past 30 years. Two schools of thought have emerged, one focusing on theoretical aspects (so-called 'optimal foraging theory'), the other on empirical studies. We summarize both, showing how they have evolved and begun to coalesce during the past decade. The emerging new framework is more complex than previous models, combining theory with observation. Modern phylogenetic methods promise new insights into how animal foraging has evolved.  相似文献   

20.
As the only obligatorily predatory primates, tarsiers are notoriously difficult to keep successfully in captivity. Here we report empirical and experimental results from a 5-year study of behavior and life history in captive Tarsius bancanus. Four reproducing adult tarsiers used space nonrandomly, preferring small-diameter vertical or near-vertical locomotor substrates at midlevel enclosure heights (1.2–2.1 m) for sleeping, scanning, and prey capture. The tarsiers were completely nocturnal, and spent 78% of the scotophase scanning, 13% sleeping, and 9% in prey capture and other activities. Only live crickets were eaten; prey capture rates were highest in the first hour after waking, but overall activity rates were highest later in the scotophase. Adult males and nonpregnant or lactating females ingested approximately 44.7–49.7 kJ/day. Growing and lactating individuals ingested approximately 84.4–94.1 KJ/day. An energetically conservative, sit-and-wait predatory strategy was employed, in which 88% of capture attempts were successful. Most successful prey captures involved reaching for, or leaping from, 90° or 60° supports in a horizontal or downward direction onto prey less than 0.6 m away. Virtually all prey captures were in arboreal locations, despite much higher densities of crickets on enclosure floors. Prey capture rates during the first hour of the nocturnal activity period were positively correlated with arboreal cricket densities. At constant arboreal cricket densities, capture rates were negatively correlated with ambient light intensity, with optimum levels for prey capture ranging from 0.1 to 2.0 Lux. In terms of social behavior, these T. bancanus were nongregarious. Females enforced interindividual spacing by chasing and displacing males. Chase/displacement rates increased significantly during late pregnancy and lactation, apparently in an attempt to keep males from harassing infants. There was no direct male parental care. Infants were precocial at birth, and grew at a rate of 0.35–0.5 g/day, until nutritional weaning at approximately 60 days of age. The implications of specialized predatory morphology and behavior for management are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号