首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The present study describes a new regeneration system based on somatic embryogenesis from mature endosperm Passiflora cincinnata Mast. cultures. Moreover, the morpho-agronomic and phenological traits, as well as enzymatic activity of regenerated triploid emblings are compared to those of diploids. Mature endosperms were cultured on Murashige and Skoog medium supplemented with various concentrations (4.5–45.2 µM) of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 μM 6-benzylaminopurine (BA). No plant growth regulators were included in the control group. Embryogenic calli were observed only in treatments supplemented with 13.6 and 18.1 µM 2,4-D?+?4.5 µM BA, with the highest number of somatic embryos per explant and regenerated plants (emblings) obtained with 18.1 µM 2,4-D. Most emblings (70%) were triploid (2n?=?3x?=?27), with a DNA amount (4.38 pg) similar to that of endosperm and 1.5 times greater than in diploid P. cincinnata seedlings (2n?=?2x?=?18), that contained 2.98 pg of DNA. While the number of organs and/or structures was akin to that in diploids, triploid emblings generally exhibited larger and longer vegetative and floral structures. The flower lifespan was also slightly altered by triploidy, nectar concentration was 27% higher, and the activity of plant defense enzymes β-1,3-glucanase and polyphenol oxidase was 29.8% and 22.1% higher. This study describes a new regeneration system for the production of phenotypic variants of this ornamental passion fruit species, opening new perspectives for future studies on genetic passion fruit breeding.

  相似文献   

2.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2001,38(3):477-479
The photosynthetic and growth responses of A. mangium to different photosynthetic photon flux density (PPFD) during early seedling establishment (36 d after sowing) were investigated. Shade-grown A. mangium seedlings exhibited lower chlorophyll (Chl) a/b ratio, higher Chl and carotenoid (Car) contents, and higher total Chl/Car ratio than sun-grown seedlings. Sun-grown seedlings showed significantly higher photosynthetic capacity and total plant dry mass. High PPFD was crucial for the successful early establishment and robust growth of A. mangium seedlings.  相似文献   

3.
D. Vodnik  N. Gogala 《Mycorrhiza》1994,4(6):277-281
Specimens of spruce Picea abies (L.) Karsten were inoculated with the fungi Laccaria laccata, Pisolithus tinctorius and Lactarius piperatus in a nursery at the time of sowing. The 1-year seedlings were then tested in two growth periods for their photosynthesis, chlorophyll and carotenoid levels, and water potential; their roots were examined with a scanning electron microscope. Increased photosynthetic activity was determined at the start of the growth season in only those seedlings inoculated with the fungus Laccaria laccata. The levels of chlorophyll and carotenoids measured in September in the needles of all three mycorrhized groups of plants were higher than in the controls.  相似文献   

4.
Wenger  K.  Gupta  S. K.  Furrer  G.  Schulin  R. 《Plant and Soil》2002,242(2):217-225
White spruce [Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.  相似文献   

5.
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on growth and drought tolerance of Poncirus trifoliata seedlings. The seedlings were inoculated with or without Glomus mosseae before exposure to a short-term (3 days) water depletion, and relevant physiological and biochemical parameters (plant height, chlorophyll content, relative water content, activity of antioxidant enzymes) and expression patterns of several stress-responsive genes were examined. Inoculation with G. mosseae led to growth promotion of the seedlings, as revealed by larger plant height and higher relative water and chlorophyll contents. When subjected to drought treatment, the AMF-inoculated (AM) plants showed better tolerance than the nonmycorrhizal (NAM) plants. Under drought, the AM plants exhibited higher level of proline and activity of two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD). In addition, mRNA abundance of four genes involved in reactive oxygen species homeostasis and oxidative stress battling was higher in the AM plants when compared with the NAM plants. These results indicate that AMF inoculation stimulated growth and enhanced drought tolerance of the seedlings, which may be due to activation of an arsenal of physiological, biochemical and molecular alterations.  相似文献   

6.
Effect of NaCl and Proline on Bean Seedlings Cultured in vitro   总被引:3,自引:0,他引:3  
Effects of NaCl (150 mM), proline (10 mM) and their combination on growth and contents of chlorophyll, proline and protein of bean (Phaseolus vulgaris cv. Kizilhaç) seedlings in vitro were investigated. NaCl decreased seedling growth. Proline added to control seedlings did not change seedling growth but decreased chlorophyll and increased protein contents. When proline added to NaCl-treated seedlings growth was increased in comparison with NaCl-treated only. Thus, proline alleviated salinity stress in bean seedlings.  相似文献   

7.
Giri B  Mukerji KG 《Mycorrhiza》2004,14(5):307-312
A field experiment was conducted to examine the effect of the arbuscular mycorrhizal fungus Glomus macrocarpum and salinity on growth of Sesbania aegyptiaca and S. grandiflora. In the salt-stressed soil, mycorrhizal root colonisation and sporulation was significantly higher in AM-inoculated than in uninoculated plants. Mycorrhizal seedlings had significantly higher root and shoot dry biomass production than non-mycorrhizal seedlings grown in saline soil. The content of chlorophyll was greater in the leaves of mycorrhiza-inoculated as compared to uninoculated seedlings. The number of nodules was significantly higher in mycorrhizal than non-mycorrhizal plants. Mycorrhizal seedling tissue had significantly increased concentrations of P, N and Mg but lower Na concentration than non-mycorrhizal seedlings. Under salinity stress conditions both Sesbania sp. showed a high degree of dependence on mycorrhizae, increasing with the age of the plants. The reduction in Na uptake together with a concomitant increase in P, N and Mg absorption and high chlorophyll content in mycorrhizal plants may be important salt-alleviating mechanisms for plants growing in saline soil.  相似文献   

8.
The aim of the present work was to see the effect of mercury and chromium on elongation growth of phaseolus seedlings and changes in chlorophyll content. Phaseolus seedlings were treated with two different concentrations of two heavy metals viz. mercury (0.05 mM and 0.4 mM HgCl2, and chromium (0.5 mM and 1.0 mM K2Cr2O7). Both mercury and chromium inhibited root and hypocotyl elongation growth. Changes in cytoplasmic and wall bound peroxidase activities were studied using guaiacol as a hydrogen donor. Peroxidase activity was higher in both mercury and chromium treated seedlings as compared to distilled water control; they showed a clear concentration effect. Peroxidase activity showed inverse relation with growth i.e. distilled water treated seedlings had maximum growth and minimum activity while higher concentration of heavy metal treated seedlings had minimum growth and maximum activity. Chlorophyll content was also decreased by mercury. The role of peroxidase activity in defense mechanism in response to heavy metal toxicity is discussed.  相似文献   

9.
We investigated how the application of composted sewage sludge to tailings affects the physiological response of woody plants growing on abandoned coal-mining sites. Twenty seedlings ofBetula schmidtii were transplanted to pots containing various combinations of artificial soil plus nursery soil, tailings, composted soil, or tailings amended with composted soil. Dry weights, shoot to root ratios, relative growth rates (RGR), chlorophyll content and fluorescence, and carbohydrate concentrations were assessed at the end of the experiment. Growth responses differed significantly among soil types. For example, dry weights were greatest for seedlings grown in composted soil and smallest for plants raised in pure tailings. Shoot to root ratios were higher for seedlings in composted soil compared with those in either tailings or nursery soil. Leaf chlorophyll content was twice as high for seedlings from composted soil than for those in the nursery soil or tailings; chlorophyll fluorescence (Fv/Fm) was lower for seedlings in either nursery soil or tailings than for those in composted soil. In contrast, plants grown in either nursery soil or tailings had higher starch concentrations in their stems, whereas the carbohydrate allocation of seedlings in composted soil was highest in the leaves, followed by stems and roots. Overall, the carbohydrate content was highest in the leaves, except for seedlings treated with tailings. Therefore, we believe that composted soil can improve the physiological and biochemical properties of trees growing in tailings when appropriate nutrients are supplemented.  相似文献   

10.
Validation of a quantitative trait locus (QTL) for outcrossing perennial plants is rarely reported due to complexity of plausible genetic models and reliance on field designs already available. Here, a particular marker-QTL haplotype exerted a large, positive effect on height for Pinus taeda and its origin could be traced to a founder, GP3, in a three-generation QTL pedigree. To validate this QTL effect, we used an extended GP3-based pedigree. In the validation cross, each of the 46 offspring was clonally propagated from developing seeds using somatic embryogenesis technology. Subsequent analyses were conducted separately for seedlings and for other somatic emblings. For seedlings, the original QTL effect could not be fully validated. For somatic emblings, a strong negative QTL effect was detected in the validation cross; some evidence from another cross-supported the original positive QTL effect. From this part of the analysis, three distinct marker-QTL haplotypes at a single locus could be inferred. Validating QTL haplotypes in readily available field tests was feasible despite the genetic model complexity inherent to outcrossing long-lived perennials.  相似文献   

11.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

12.
Effects of Low Temperature on Winter Wheat and Cabbage Leaves   总被引:1,自引:0,他引:1  
Contents of soluble proteins, proline and chlorophyll in winter wheat (Triticum aestivum cv. Doğu-88) and cabbage leaves (Brassica oleracea convar. acephala) during acclimation to low temperature were investigated. When both of the plants species were cold acclimated, soluble proteins, proline and chlorophyll contents were higher than in the controls (non-acclimated). Also protein patterns differed between the plants at control and cold conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
为获得马尾松幼苗最佳施肥配方,该文以1年生马尾松幼苗为试验材料,采用L16(43)正交设计,并通过测定幼苗苗高、地径、生物量、叶绿素含量、叶片N、P、K含量,探讨不同N、P、K配比施肥对马尾松幼苗生长特征影响。结果表明:(1)不同配比施肥处理间马尾松幼苗苗高、地径、生物量、质量指数、叶绿素和养分含量存在显著差异,其中,处理12生物量、质量指数、叶绿素a和总叶绿素含量、隶属值最高。(2)施N对幼苗生长及生理指标均有极显著影响;施K对苗高、地径、地上生物量、总生物量有显著影响,对叶绿素和针叶养分有极显著影响;施P对叶绿素a、叶绿素b、针叶N和P含量有极显著影响,对苗高、地下生物量、总叶绿素含量有显著影响。(3)施N对苗高、地径、地上生物量、总生物量、质量指数、叶绿素a含量、总叶绿素含量和针叶N含量的影响最大,K次之,P最小。各因素对地下生物量和针叶P含量的影响均表现为N>P>K。(4)N3水平利于幼苗苗高地径的生长及生物量的积累,N4水平利于叶绿素a和总叶绿素含量及针叶N、P含量的积累,P4水平利于生物量、叶绿素含量和养分P含量的积累...  相似文献   

14.
Abstract

Comparative researches on morphology and physiology of PICEA and LARIX. Fresh weight and chlorophyll content in seedlings kept at various light intensities. — The fresh weight and the chlorophyll content of lots of seedlings from Larix decidua and Picea excelsa grown on sand for 12 days in climatic cell at 25 [ddot]C with 86% relative humidity and a light intensity of 90, 250, 500, 1.000, 2.000 and 4.000 lux were determined.

The fresh weight of Picea seedlings is not significantly affected by all light intensities except for 4.000 lux, where it is 20% higher. Even in dim light (90 lux) the fresh weight of Picea seedlings is only 7% inferior to that of the lot kept at 2.000 lux.

The results obtained in Larix are remarkably different; its fresh weight is more influenced by the light intensity: at 4.000 lux, e. g., the fresh weight is considerably higher (more than 20%) than the arithmetical mean of all the lots, while at 90 lux it appears greatly inferior (30%) to the lot kept at 2.000 lux.

No correlation exhists between fresh weight and chlorophyll content variations.

In Larix only the difference between seedlings kept at 250 lux and 90 lux is very strong. In the latter the chlorophyll content for g. f. w. is 40% inferior to the average of all the lots. At the maxime intensities the chlorophyll content of Larix seedlings appears to be particularly increased, while that of Picea seedlings is slightly inferior to that observed at 2.000 lux.

These figures are in agreement with the special ecology of the two plants and particularly with the light need of Larix, as it is clearly demonstrated by the fresh weight and chlorophyll content per g. f. w. and by the different ratio in chlorophyll contents of the lots of seedlings kept at 2.000 and 4.000 lux.  相似文献   

15.
为探索苦楝应对盐胁迫的响应机制,该文以1年生苦楝(Melia azedarach)实生苗为材料,在盆栽条件下设置中性盐Na_2SO_4和碱性盐Na_2CO_33个盐浓度(200、400、600 mmol·L~(-1))处理40 d,研究苦楝的抗盐碱水平及在不同程度盐碱胁迫条件下的生长及光合生理变化。结果表明:随着盐浓度的提高,苦楝的苗高、地径和生物量的增长量均呈现下降趋势,且碱性盐胁迫条件下降程度更大,盐胁迫提高苦楝的根冠比。处理10 d时,苦楝幼苗的所有光合指标随中性盐和碱性盐浓度的提高呈相似的下降特征,碱性盐胁迫条件下的降低幅度显著大于中性盐胁迫,且随处理时间的增加,中性盐和碱性盐处理下苦楝幼苗的净光合速率和蒸腾速率显著降低。随着盐浓度的提高,苦楝的叶绿素含量呈现下降趋势,200 mmol·L~(-1)盐胁迫对叶绿素含量影响较小,400、600 mmol·L~(-1)盐胁迫均对叶绿素含量有显著影响。600 mmol·L~(-1)碱性盐胁迫条件下,苦楝叶片相对电导率和饱和水分亏缺最高,显著高于其余处理。同等浓度下,碱性盐胁迫的苦楝叶片相对电导率和饱和水分亏缺显著高于中性盐胁迫处理。综上结果认为,苦楝具有一定的耐盐碱能力,碱性盐比中性盐对苦楝幼苗的影响更大。  相似文献   

16.
王改萍  祝长青  王茹 《微生物学通报》2021,48(11):4134-4144
[背景] 多种甲基杆菌属细菌对寄主植物有促生作用,其分布区域较广。筛选具有耐盐与促生特性的甲基杆菌属菌株可为微生物菌肥的开发提供依据。[目的] 从新疆乌尔禾地区盐渍土壤中筛选耐盐促生菌,对其培养基成分进行优化及促生能力进行研究,为微生物菌肥的开发提供依据。[方法] 采用阿须贝无氮培养基筛选耐盐菌株,对菌株进行基因序列分析及生理生化测定,采用平板试验法初步研究该菌对拟南芥的生长影响。[结果] 筛选出中度耐盐菌株W-1,经鉴定为甲基杆菌属(Methylobacteriumsp.)。菌株生长最佳无机盐为NaCl,最适浓度为1%–3%,最高耐受浓度达7%。最佳氮源为酸水解酪蛋白,产生长素最高达33.53 mg/L。溶磷能力达28.71 mg/L。菌株W-1接种拟南芥幼苗后叶绿素a和叶绿素b含量均高于对照组,同时对其根系发育有显著的促进作用。[结论] 菌株W-1促生性能显著,可为生物肥料制备提供菌种资源。  相似文献   

17.
Abstract Seeds of Picea abies were germinated and grown in either darkness or constant light. The chlorophyll content and photosynthetic carbon dioxide uptake of developing seedlings of different ages was determined. Ten-day-old dark grown seedlings showed an instant ability for photosynthetic carbon dioxide uptake and also formed further chlorophyll most rapidly upon subsequent illumination. These activities progressively diminished when the dark growth period was extended. Light grown seedlings reached a maximum chlorophyll level after 15 days growth, and this preceded maximal photosynthetic development.  相似文献   

18.
为了解丛枝菌根真菌(arbuscular mycorrhiza,AMF)对西南桦幼苗生长和光合生理的影响,对西南桦(Betula alnoides)优良无性系接种AMF菌株后的生长、光合参数、叶绿素含量和荧光参数进行了研究。结果表明,6个AMF菌株均能与西南桦无性系幼苗形成共生体,接种根内球囊霉(Glomus intraradices)菌株(AMF5)和摩西球囊霉(G.mosseae)HUN03B菌株(AMF3)显著提高了幼苗生长量、净光合速率、水分利用效率、叶绿素含量和荧光参数(P0.05),显示出AMF5、AMF3与幼苗的亲和力明显优于其他菌株。西南桦4个无性系间的菌根侵染率差异不显著(P0.05),但AMF对无性系FB4、BY1的促生效应显著优于FB4+和A5。因此,适合与西南桦共生的优良菌株为AMF5和AMF3,这为西南桦菌根化育苗提供理论依据。  相似文献   

19.
Thirty-day-old seedlings of tomato (Lycopersicon esculentum Mill.) were treated with various Hg concentrations (0, 10, and 50 μM) for up to 20 days, and the hypothesis that Hg induces oxidative stress leading to the reduction of biomass and chlorophyll content in leaves was examined. The accumulation of Hg in seedlings increased with external Hg concentration and exposure time, and Hg content in roots exposed to 50 μM Hg for 20 days was about 27-fold higher than that in shoots. Furthermore, Hg exposure not only reduced biomass and chlorophyll levels in leaves but also caused an overall increase of endogenous H2O2, lipid peroxidation products (malondialdehyde), and antioxidant emzymes activities such as superoxide dismutase, catalase, and peroxidase in leaves and roots. Our results suggest that the suppression of growth and the reduction of chlorophyll levels in tomato seedlings exposed to toxic Hg levels may be caused by an enhanced production of active oxygen species and subsequent high lipid peroxidation.  相似文献   

20.
接种AM真菌对喜树幼苗生长及光合特性的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
 喜树(Camptotheca acuminata)是我国特有的多年生亚热带落叶阔叶树种, 因其次生代谢产物喜树碱具有良好的抗肿瘤活性而备受关注。通过温室盆栽接种试验, 观察了3属6种丛枝菌根(AM)真菌木薯球囊霉(Glomus manihot)、地表球囊霉(G. versiforme)、透光球囊霉(G. diaphanum)、蜜色无梗囊霉(Acaulospora mellea)、光壁无梗囊霉(A. laevis)和弯丝硬囊霉(Sclerocystis sinuosa)对喜树幼苗生长及光合特性的影响。结果表明, 除地表球囊霉外, 其余菌根幼苗生物量显著高于无菌根幼苗, 蜜色无梗囊霉、弯丝硬囊霉和透光球囊霉的菌根幼苗生物量分别达到无菌根幼苗的1.6倍、1.4倍和1.3倍。与无菌根幼苗相比, 蜜色无梗囊霉菌根幼苗叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均有显著提高, 而胞间CO2浓度(Ci)与气孔限制值(Ls)则变化不明显。接种透光球囊霉、蜜色无梗囊霉、光壁无梗囊霉和弯丝硬囊霉的喜树幼苗叶片叶绿素a含量、总叶绿素含量、叶绿素a/b和类胡萝卜素含量均显著高于无菌根幼苗, 而叶绿素b含量只有木薯球囊霉和弯丝硬囊霉菌根幼苗显著高于无菌根幼苗。接种AM真菌对喜树幼苗叶片叶绿素荧光参数影响较小, 只有透光球囊霉菌根幼苗叶片的最大光能转换效率(Fv/Fm)显著高于无菌根幼苗, 接种木薯球囊霉和弯丝硬囊霉的喜树幼苗的PSⅡ有效光化学量子产量(EQY)显著高于无菌根幼苗, 弯丝硬囊霉菌根幼苗的光化学淬灭(qP)显著高于无菌根幼苗, 非光化学淬灭(NPQ)则显著低于无菌根幼苗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号