首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]pyrimidine selectively and reversibly inhibits monoamine oxidase A (MAO-A). After oral administration of rac-RS-8359 to rats, mice, dogs, monkeys, and humans, plasma concentrations of the (R)-enantiomer were greatly higher than were those of the (S)-enantiomer in all species studied. The AUC((R)) to AUC((S)) ratios were 2.6 in rats, 3.8 in mice, 31 in dogs, and 238 in monkeys, and the (S)-enantiomer was almost negligible in human plasma. After intravenous administration of RS-8359 enantiomers to rats, the pharmacokinetic parameters showed that the (S)-enantiomer had a 2.7-fold greater total clearance (CL(t)) and a 70% shorter half-life (t(1/2)) than those for the (R)-enantiomer but had no difference in distribution volume (V(d)). No significant difference in the intestinal absorption rate was observed. The principal metabolites were the 2-keto form, possibly produced by aldehyde oxidase, the cis-diol form, and the 2-keto-cis-diol form produced by cytochrome P450 in rats, the cis-diol form in mice, RS-8359 glucuronide in dogs, and the 2-keto form in monkeys and humans. Thus, the rapid disappearance of the (S)-enantiomer from the plasma was thought to be due to the rapid metabolism of the (S)-enantiomer by different drug-metabolizing enzymes, depending on species.  相似文献   

2.
Wang M  Dickinson RG 《Life sciences》2000,68(5):525-537
Acyl glucuronides are reactive electrophilic metabolites of carboxylate drugs, capable of undergoing hydrolysis, rearrangement and covalent binding reactions with proteins in vivo. Such covalent drug-protein adducts may be prerequisites for certain idiosyncratic immune and toxic responses in susceptible individuals. The present study examined the effect of experimental cholestasis on the extent and pattern of formation of protein adducts in plasma and liver of rats given the non-steroidal antiinflammatory drug (NSAID) zomepirac (ZP). Groups of intact, bile-exteriorized and bile duct-ligated rats given a 50 mg/kg i.v. dose of ZP were studied for 24 hr. In intact rats, only 1.4% of the dose was recovered as the sum of ZP, ZP acyl glucuronide (ZAG) and its rearrangement isomers (iso-ZAG) in urine in 24 hr. In bile-exteriorized animals, 0.5% of the dose was recovered in urine in 24 hr, with 31.6% of the dose being recovered in bile (2.7% as ZP, 20.0% as ZAG and 8.9% as iso-ZAG). In the bile duct-ligated group, recovery of dose in 24 hr urine totalled 17.5% (1.7% as ZP, 6.7% as ZAG and 9.1% as iso-ZAG). ZAG and iso-ZAG were measurable in plasma only in the bile duct-ligated group, and covalent binding of ZP to plasma proteins was much higher (5-6 fold) than in intact or bile-exteriorized rats. Total adduct concentrations in liver were not significantly different among the three groups. Immunoblotting using a polyclonal ZP antiserum confirmed that serum albumin was a major target protein in plasma. The major ZP-modified bands in the livers of intact and bile-exteriorized rats were at about 110, 140 and 200 kDa. However, the bands at 110 and 140 kDa were much lower in the livers of bile duct-ligated rats. The results show that about 30% of ZP doses are normally excreted as ZAG and its isomers in bile, with only minor excretion in urine. Bile duct ligation shunts the glucuronide into blood (and urine), strongly promoting adduct formation with plasma proteins, and alters the pattern but not the total quantity of drug-modified proteins formed in the liver.  相似文献   

3.
《Life sciences》1993,53(8):PL141-PL146
Although metabolism via glucuronide conjugation has generally been considered a detoxification route for carboxylic acids, the newly discovered chemical reactivity of these conjugates, leading to covalent binding with proteins, is consistent with the toxicity observed for drugs containing the carboxylic acid moiety. Here we report that degradation rates (intramolecular rearrangement and hydrolysis) for 9 drug glucuronide metabolites show an excellent correlation (r2=0.995) with the extents of drug covalent binding to albumin in vitro. Furthermore, this binding capacity is predictable based on chemical structure of the acid and depends on the degree of substitution at the carbon alpha to the carboxylic acid. The in vivo covalent binding in humans for these drugs is also predictable (r2=0.873) when the extent of adduct formation is corrected for the measured plasma glucuronide concentrations. These results suggest that the structure of a carboxylic acid drug may predict the degree to which the corresponding acyl glucuronides will form covalent adducts that probably/possibly lead to toxicity. This information could be a useful adjunct in drug design.  相似文献   

4.
Ahn CY  Kim EJ  Kwon JW  Chung SJ  Kim SG  Shim CK  Lee MG 《Life sciences》2003,73(14):1783-1794
Effects of cysteine on the pharmacokinetics of clarithromycin were investigated after intravenous administration of the drug at a dose of 20 mg/kg to control rats (4-week fed on 23% casein diet) and rats with PCM (protein-calorie malnutrition, 4-week fed on 5% casein diet) and PCMC (PCM treated with 250 mg/kg for oral cysteine twice daily during the fourth week). Clarithromycin has been reported to be metabolized via hepatic microsomal cytochrome P450 (CYP) 3A4 to 14-hydroxyclarithromycin (primary metabolite of clarithromycin) in human subjects. It has also been reported that in rats with PCM, CYP3A23 level decreased to 40-50% of control level, but decreased CYP3A23 level in rats with PCM completely returned to control level by oral cysteine supplementation (rats with PCMC). Human CYP3A4 and rat CYP3A23 proteins have 73% homology. In rats with PCM, the area under the plasma concentration-time curve from time zero to time infinity, AUC (567, 853 and 558 microg min/ml for control rats and rats with PCM and PCMC, respectively) and percentage of clarithromycin remaining after incubation with liver homogenate (69.6, 83.9 and 71.7%) were significantly greater than those in control rats and rats with PCMC. Moreover, in rats with PCM, the total body clearance, CL (35.3, 23.4 and 35.8 ml/min/kg), nonrenal clearance, CL(NR) (21.3, 15.2 and 24.1 ml/min/kg) and maximum velocity for the disappearance of clarithromycin after incubation with hepatic microsomal fraction, V(max) (351, 211 and 372 pmol/min/mg protein) were significantly slower than those in control rats and rats with PCMC. However, above mentioned each parameter was not significantly different between control rats and rats with PCMC. The above data suggested that metabolism of clarithromycin decreased significantly in rats with PCM as compared to control due to significantly decreased level of CYP3A23 in the rats. By cysteine supplementation (rats with PCMC), some pharmacokinetic parameters of clarithromycin (AUC, CL, CL(NR) and V(max)) were restored fully to control levels because CYP3A23 level was completely returned to control level in rats with PCMC.  相似文献   

5.
Acyl glucuronides are reactive metabolites of carboxylate drugs, able to undergo a number of reactions in vitro and in vivo, including isomerization via intramolecular rearrangement and covalent adduct formation with proteins. The intrinsic reactivity of a particular acyl glucuronide depends upon the chemical makeup of the drug moiety. The least reactive acyl glucuronide yet reported is valproic acid acyl glucuronide (VPA-G), which is the major metabolite of the antiepileptic agent valproic acid (VPA). In this study, we showed that both VPA-G and its rearrangement isomers (iso-VPA-G) interacted with bovine brain microtubular protein (MTP, comprised of 85% tubulin and 15% microtubule associated proteins {MAPs}). MTP was incubated with VPA, VPA-G and iso-VPA-G for 2 h at room temperature and pH 7.5 at various concentrations up to 4 mM. VPA-G and iso-VPA-G caused dose-dependent inhibition of assembly of MTP into microtubules, with 50% inhibition (IC50) values of 1.0 and 0.2 mM respectively, suggesting that iso-VPA-G has five times more inhibitory potential than VPA-G. VPA itself did not inhibit microtubule formation except at very high concentrations (≥2 mM). Dialysis to remove unbound VPA-G and iso-VPA-G (prior to the assembly assay) diminished inhibition while not removing it. Comparison of covalent binding of VPA-G and iso-VPA-G (using [14C]-labelled species) showed that adduct formation was much greater for iso-VPA-G. When [14C]-iso-VPA-G was reacted with MTP in the presence of sodium cyanide (to stabilize glycation adducts), subsequent separation into tubulin and MAPs fractions by ion exchange chromatography revealed that 78 and 22% of the covalent binding occurred with the MAPs and tubulin fractions respectively. These experiments support the notion of both covalent and reversible binding playing parts in the inhibition of microtubule formation from MTP (though the acyl glucuronide of VPA is less important than its rearrangement isomers in this regard), and that both tubulin and (perhaps more importantly) MAPs form adducts with acyl glucuronides.  相似文献   

6.
The in vitro and in vivo stereoselective hydrolysis characteristics of the mutual prodrug FP-PPA, which is a conjugate of flurbiprofen (FP) with the histamine H2-antagonist PPA, to reduce gastrointestinal lesions induced by FP were investigated and compared with those of FP methyl ester (rac-FP-Me) and FP ethyleneglycol ester (rac-FP-EG). The rac-FP derivatives were hydrolyzed preferentially to the (+)-S-isomer in plasma and to the (−)-R-isomer in liver and small intestinal mucosa. Interestingly, in the gastric mucosa, the stereoselectivity of hydrolysis of (−)-R-FP-PPA was opposite from that of rac-FP-Me and rac-FP-EG, which suggested that the stereoselective hydrolysis of FP-PPA was helpful in reducing gastric damage induced by (+)-S-FP. However, hydrolysis of all rac-FP derivatives was found to be catalyzed by carboxylesterases in the gastric mucosa. The stereoselective disposition of FP enantiomers early after intravenous administration of rac-FP-PPA could be explained by the stereoselective formation of (−)-R-FP from rac-FP-PPA in the liver. (−)-R-FP-PPA was completely hydrolyzed to form (−)-R-FP in vivo, while 78% of (+)-S-FP-PPA was hydrolyzed to (+)-S-FP, with a corresponding decrease in the area under the curve. Twenty-five percent of (+)-S-FP-PPA might be eliminated as the intact prodrug or its metabolites other than FP. The most important bioconversion of FP-PPA occurred in plasma, and additional hydrolysis of the R-enantiomer in liver resulted in the stereoselectivity observed following both i.v. and p.o. administration. © 1996 Wiley-Liss, Inc.  相似文献   

7.
8.
Covalent binding of acyl glucuronides to proteins is considered an initiating event for the organ toxicity of drugs containing a carboxylic acid group. An acyl glucuronide (AcMPAG) of the immunosuppressant mycophenolic acid was described and shown to form covalent adducts with plasma albumin in vivo. The aim of the present investigation was to identify AcMPAG target proteins in the liver and colon of rats treated with mycophenolate mofetil, which may contribute to a better understanding of the mechanisms responsible for the development of side effects during therapy with this drug. Mycophenolate mofetil was administered per os in to Wistar rats (40 mg/kg/day) over 21 days. Proteins in liver and colon homogenates were separated by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. AcMPAG labeled protein spots were detected by Western blotting. After in-gel tryptic digestion of the protein spots from parallel gels (n = 2), peptides were characterized by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Data base searching identified AcMPAG target proteins. Tryptic peptides with sufficient signal intensities were subjected to post-source decay analysis. Three proteins in the liver (ATPase/ATP synthase (alpha and beta subunits), protein disulfide isomerase A3 and selenium binding protein) and one protein in the colon (selenium binding protein) were identified as targets for AcMPAG. ATPase/ATP synthase and protein disulfide isomerase are essential proteins involved in the control of the energy and redox state of the cells, whereas the physiological role of selenium binding protein is not fully understood. This study shows for the first time the formation of adducts between tissue proteins and AcMPAG. Whether this chemical modification is associated with compromised protein function and drug toxicity remains to be investigated.  相似文献   

9.
We have previously shown that a physiological increase in plasma leucine for 60 and 120 min increases translation initiation factor activation in muscle of neonatal pigs. Although muscle protein synthesis is increased by leucine at 60 min, it is not maintained at 120 min, perhaps because of the decrease in plasma amino acids (AA). In the present study, 7- and 26-day-old pigs were fasted overnight and infused with leucine (0 or 400 micromol.kg(-1).h(-1)) for 120 min to raise leucine within the postprandial range. The leucine was infused in the presence or absence of a replacement AA mixture (without leucine) to maintain baseline plasma AA levels. AA administration prevented the leucine-induced reduction in plasma AA in both age groups. At 7 days, leucine infusion alone increased eukaryotic initiation factor (eIF) 4E binding protein-1 (4E-BP1) phosphorylation, decreased inactive 4E-BP1.eIF4E complex abundance, and increased active eIF4G.eIF4E complex formation in skeletal muscle; leucine infusion with replacement AA also stimulated these, as well as 70-kDa ribosomal protein S6 kinase, ribosomal protein S6, and eIF4G phosphorylation. At 26 days, leucine infusion alone increased 4E-BP1 phosphorylation and decreased the inactive 4E-BP1.eIF4E complex only; leucine with AA also stimulated these, as well as 70-kDa ribosomal protein S6 kinase and ribosomal protein S6 phosphorylation. Muscle protein synthesis was increased in 7-day-old (+60%) and 26-day-old (+40%) pigs infused with leucine and replacement AA but not with leucine alone. Thus the ability of leucine to stimulate eIF4F formation and protein synthesis in skeletal muscle is dependent on AA availability and age.  相似文献   

10.
Chen Y  Liu XQ  Zhong J  Zhao X  Wang Y  Wang G 《Chirality》2006,18(10):799-802
The pharmacokinetics of ornidazole (ONZ) were investigated following i.v. administration of racemic mixture and individual enantiomers in beagle dogs. Plasma concentrations of ONZ enantiomers were analyzed by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OB-H column with quantification by UV at 310 nm. Notably, the mean plasma levels of (-)-ONZ were higher in the elimination phase than those of (+)-ONZ. (-)-ONZ also exhibited greater t1/2, MRT, AUC(0-t) and smaller CL, than those of its antipode. The area under the plasma concentration-time curve (AUC(0-t)) of (-)-ONZ was about 1.2 times as high as that of (+)-ONZ. (+)-ONZ total body clearance (CL) was 1.4 times than its optical antipode. When given separately, there were significant differences in the values of AUC(0-infinity) and CL between ONZ enantiomers (P < 0.05), indicating that elimination of (+)-ONZ was more rapid than that of (-)-ONZ. No significant differences were found between the estimates of the pharmacokinetic parameters of (+)-ONZ or (-)-ONZ, obtained following administration as the individual and as a racemic mixture. This study demonstrates that the elimination of ONZ enantiomers is stereoselective and chiral inversion and enantiomer/enantiomer interaction do not occur when the enantiomers are given separately and as racemic mixture.  相似文献   

11.
The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing three reactions: intramolecular rearrangement, hydrolysis, and intermolecular reactions with proteins leading to covalent drug-protein adducts. This essential dogma has been accepted for over a decade. The key question proposed by researchers, and now the pharmaceutical industry, is: does or can the covalent modification of endogenous proteins, mediated by reactive acyl glucuronide metabolites, lead to adverse drug reactions, perhaps idiosyncratic in nature? This review evaluates the evidence for acyl glucuronide-derived perturbation of homeostasis, particularly that which might result from the covalent modification of endogenous proteins and other macromolecules. Because of the availability of acyl glucuronides for test tube/in vitro experiments, there is now a substantial literature documenting their rearrangement, hydrolysis and covalent modification of proteins in vitro. It is certain from in vitro experiments that serum albumin, dipeptidyl peptidase IV, tubulin and UGTs are covalently modified by acyl glucuronides. However, these in vitro experiments have been specifically designed to amplify any interference with a biological process in order to find biological effects. The in vivo situation is not at all clear. Certainly it must be concluded that all humans taking carboxylate drugs that form reactive acyl glucuronides will form covalent drug-protein adducts, and it must also be concluded that this in itself is normally benign. However, there is enough in vivo evidence implicating acyl glucuronides, which, when backed up by in vivo circumstantial and documented in vitro evidence, supports the view that reactive acyl glucuronides may initiate toxicity/immune responses. In summary, though acyl glucuronide-derived covalent modification of endogenous macromolecules is well-defined, the work ahead needs to provide detailed links between such modification and its possible biological consequences.  相似文献   

12.
13.
Many nonsteroidal anti-inflammatory drugs (NSAIDs) which have antiproliferative activity in colon cancer cells are carboxylate compounds forming acyl glucuronide metabolites. Acyl glucuronides are potentially reactive, able to hydrolyse, rearrange into isomers, and covalently modify proteins under physiological conditions. This study investigated whether the acyl glucuronides (and isomers) of the carboxylate NSAIDs diflunisal, zomepirac and diclofenac had antiproliferative activity on human adenocarcinoma HT-29 cells in culture. Included as controls were the carboxylate NSAIDs themselves, the non-carboxylate NSAID piroxicam, and the carboxylate non-NSAID valproate, as well as its acyl glucuronide and isomers. The compounds were incubated at 1-3000 microM with HT-29 cells for 24 hr, with [3H]-thymidine added for an additional 2 hr incubation. IC50 values were calculated from the concentration-inhibition response curves for thymidine uptake. The four NSAIDs inhibited thymidine uptake, with IC50 values about 200-500 microM. All of the NSAID acyl glucuronides (and isomers, tested in the case of diflunisal) showed antiproliferative activity broadly comparable to the parent drugs. This activity may stem from direct uptake of intact glucuronide/isomers followed by covalent modification of proteins critical in the cell replication process. However, hydrolysis during incubation and cellular uptake of liberated parent NSAID will play a role. In HT-29 cells incubated with zomepirac, covalently modified proteins in cytosol were detected by immunoblotting with a zomepirac antibody, suggesting that HT-29 cells do have the capacity to glucuronidate zomepirac. The anti-epileptic drug valproate had no effect on inhibition of thymidine uptake, though, surprisingly, its acyl glucuronide and isomers were active. The reasons for this are unclear at present.  相似文献   

14.
Kim SH  Kwon JW  Kim WB  Lee I  Lee MG 《Life sciences》2002,71(19):2291-2298
Hormonal, physiological, and biochemical changes occurring in dehydrated patients could alter the pharmacokinetics of the drugs; therefore, the pharmacokinetics of DA-1131, a new carbapenem antibiotic, were investigated after 1-min intravenous administration of the drug at 50 mg/kg to control and 72-hr water-deprived rats. The impaired kidney and liver functions were observed in water-deprived rats on the basis of tissue microscopic examination. After intravenous infusion of the drug to water-deprived rats, the plasma concentrations of DA-1131 were higher and this resulted in a significantly greater total area under the plasma concentration-time curve from time zero to time infinity than those in control rats (4520 versus 3760 microg min/ml). This could be due to significantly slower total body clearance (CL) of DA-1131 in water-deprived rats (9.81 versus 14.1 ml/min/kg). The significantly slower CL of DA-1131 in water-deprived rats was due to significant decrease in both renal clearance (2.87 versus 5.13 ml/min/kg because of a significant decrease in 8-hr urinary excretion of unchanged DA-1131 [28.4 versus 39.9% of the intravenous dose] due to impaired kidney function) and nonrenal clearance (6.82 versus 8.66 ml/min/kg because of a significant decrease in the metabolism of DA-1131 in the kidney, as proved by the significant decrease in total renal DHP-I enzyme activity [1900 versus 2130 mU/each kidney]) in water-deprived rats. Water-deprivation did not alter the affinity of rat tissues to DA-1131.  相似文献   

15.
The pharmacokinetic profile of S(-)-hydroxyhexamide (S-HH), a pharmacologically active metabolite of acetohexamide, was examined in male and female rats. S-HH was eliminated more rapidly from plasma in the males than in the females. A significant sex difference was observed in the pharmacokinetic parameters of S-HH in rats. Testectomy caused significant alteration in these parameters of S-HH in male rats, whereas ovariectomy did not in the females. The co-administration of sulfamethazine significantly decreased the plasma clearance (CL(p)) of S-HH in male rats, but had no effect in the females. The plasma concentrations of acetohexamide generated from S-HH showed no sex-related difference. Furthermore, there was no difference in the accumulation of S-HH by renal cortical slices from male and female rats. We propose the possibility that the sex-dependent pharmacokinetics of S-HH in rats is mediated through the male-specific hydroxylation of the cyclohexyl ring catalyzed by a major cytochrome p450 (CYP) isoform (CYP2C11), although the detailed mechanism remains to be elucidated.  相似文献   

16.
Glucuronidation of a number of carboxyl-containing drugs generates reactive acyl glucuronide metabolites. These electrophilic species alkylate cell proteins and may be implicated in the pathogenesis of a number of toxic syndromes seen in patients receiving the parent aglycones. Whether acyl glucuronides also attack nuclear DNA is unknown, although the acyl glucuronide formed from clofibric acid was recently found to decrease the transfection efficiency of phage DNA and generate strand breaks in plasmid DNA in vitro. To determine if such a DNA damage occurs within a cellular environment, the comet assay (i.e. single-cell gel electrophoresis) was used to detect DNA lesions in the nuclear genome of isolated mouse hepatocytes cultured with clofibric acid. Overnight exposure to 50 microM and higher concentrations of clofibric acid produced concentration-dependent increases in the comet areas of hepatocyte nuclei, with 1 mM clofibrate producing a 3.6-fold elevation over controls. These effects closely coincided with culture medium concentrations of the glucuronide metabolite formed from clofibric acid, 1-O-beta-clofibryl glucuronide. Consistent with a role for glucuronidation in the DNA damage observed, the glucuronidation inhibitor borneol diminished glucuronide formation from 100 microM clofibrate by 98% and returned comet areas to baseline levels. Collectively, these results suggest that the acyl glucuronide formed from clofibric acid is capable of migrating from its site of formation within the endoplasmic reticulum to generate strand nicks in nuclear DNA.  相似文献   

17.
Fourier-transformed infrared spectroscopy (FTIR) and molecular dynamics (MD) simulation results are presented to support our hypothesis that the conformation and the oligomeric state of the HIV-1 gp41 fusion domain or fusion peptide (gp41-FP) are determined by the membrane surface area per lipid (APL), which is affected by the membrane curvature. FTIR of the gp41-FP in the Aerosol-OT (AOT) reversed micellar system showed that as APL decreases from approximately 50 to 35 A2 by varying the AOT/water ratio, the FP changes from the monomeric alpha-helical to the oligomeric beta-sheet structure. MD simulations in POPE lipid bilayer systems showed that as the APL decreases by applying a negative surface tension, helical monomers start to unfold into turn-like structures. Furthermore, an increase in the applied lateral pressure during nonequilibrium MD simulations favored the formation of beta-sheet structure. These results provide better insight into the relationship between the structures of the gp41-FP and the membrane, which is essential in understanding the membrane fusion process. The implication of the results of this work on what is the fusogenic structure of the HIV-1 FP is discussed.  相似文献   

18.
The in vitro intrinsic clearances (CL(int)) for the metabolism of p-methoxymethamphetamine (PMMA) and fluoxetine by the CYP2D6 enzyme were calculated using a steady-state (SS) approach and a new general enzyme (GE) method, which measures the formation of product and the depletion of substrate as a function of time. For PMMA, the SS experiment resulted in a CL(int) of 2.7+/-0.2 microL pmol 2D6(-1)min(-1) and the GE experiment resulted in a CL(int) of 3.0+/-0.6 microL pmol 2D6(-1)min(-1). For fluoxetine, the SS experiment resulted in a CL(int) of 0.33+/-0.17 microL pmol 2D6(-1)min(-1) and the GE experiment resulted in a CL(int) of 0.188+/-0.013 microL pmol 2D6(-1)min(-1). We used two kinetic modeling techniques that can accommodate atypical kinetic models. We also show that the addition of fluoxetine results in a 10-fold decrease in the observed intrinsic clearance of PMMA, confirming that fluoxetine is a potent inhibitor of the liver enzyme CYP2D6.  相似文献   

19.
Acyl glucuronides are known to be labile conjugates, which undergo hydrolysis and bind irreversibly to proteins. The lipid-regulating agent (±)-beclobrate is immediately converted to the free acid after oral administration. Further metabolism leads to formation of the corresponding diastereomeric acyl glucuronides. Beclobric acid glucuronides were quantified by indirect measurement with an HPLC method based on chiral fluorescent derivatization of the carboxylic acid and subsequent normal-phase chromatography. The renal clearance of unchanged drug is low, with almost all drug excreted into urine as glucuronic acid conjugates. Beclobric acid glucuronide is also detectable in plasma. In vitro degradation studies with beclobric acid glucuronide (at a concentration of 5 μM in 150 mM phosphate buffer pH 7.4) exhibited a minor tendency for acyl migration and hydrolysis, i.e., a higher stability than has been observed for the acyl glucuronides of most other drugs. The in vitro degradation half-lives of the two beclobric acid β-1-O-acyl glucuronides were 22.7 and 25.7 h. After incubation with pooled plasma and human serum albumin in buffer pH 7.4 irreversible binding was measured in vitro. No significant difference between the two enantiomers was detected with respect to the magnitude of in vitro irreversible binding. In 3 healthy male volunteers the extent of irreversible binding of both beclobric acid enantiomers to plasma proteins was investigated after single and multiple oral doses of racemic beclobrate (100 mg once daily). Irreversible binding of both enantiomers was observed in all volunteers. The adduct densities for (?)- and (+)-beclobric acid after single 100 mg beclobrate doses were 0.147 × 10?4 and 0.177 × 10?4 mol/mol protein. Multipie dosing increased irreversible binding 3- to 4-fold. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Acyl glucuronides formed from carboxylic acids can undergo hydrolysis, acyl migration, and covalent binding to proteins. In buffers at physiological pH, the degradation of acylglucuronide of a chiral NSAID, carprofen, consisted mainly of acyl migration. Acidic pH reduced hydrolysis and acyl migration, thus stabilizing the carprofen acyl glucuronides. Addition of human serum albumin (HSA) led to an increased hydrolysis of the conjugates of both enantiomers. This protein protected R-carprofen glucuronide from migration and therefore improved its overall stability. Hydrolysis was stereoselective in favor of the S conjugate. The protein domains and the amino acid residues likely to be responsible for the hydrolytic activity of HSA were deduced from the results of various investigations: competition with probes specific of binding sites, effects of pH and of chemical modifications of albumin. Dansylsarcosine (DS), a specific ligand of site II of HSA, impaired the hydrolysis, whereas dansylamide (DNSA) and digoxin, which are specific ligands of sites I and III, respectively, had no effect. The extent of hydrolysis by HSA strongly increased with pH, indicating the participation of basic amino acids in this process. The results obtained with chemically modified HSA suggest the major involvement of Tyr and Lys residues in the hydrolysis of glucuronide of S-carprofen, and of other Lys residues for that of its diastereoisomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号