首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Exendin-4, a stable GLP-1 receptor agonist, has been shown to stimulate insulin secretion. It has also been shown to exert beneficial effects on endothelial function that are independent of its glycemic effects. The molecular mechanisms underlying the protective actions of exendin-4 against diabetic glucolipotoxicity in endothelial cells largely remain elusive. We have investigated the long-term in vitro effect of palmitate or high glucose (simulating the diabetic milieu) and the role of exendin-4 on gene expression in human coronary artery endothelial cells. Gene expression profiling in combination with Western blotting revealed that exendin-4 regulates expression of a number of genes involved in angiogenesis, inflammation and thrombogenesis under glucolipotoxic conditions. Our results indicate that exendin-4 may improve endothelial cell function in diabetes through regulating expression of the genes, whose expression was disrupted by glucolipotoxicity. As endothelial dysfunction appears to be an early indicator of vascular damage, and predicts both progression of atherosclerosis and incidence of cardiovascular events, exendin-4 and possibly other incretin-based strategies may confer additional cardiovascular benefit beyond improved glycemic control.  相似文献   

5.
6.
7.
Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value.  相似文献   

8.

Background

Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2 diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra).

Methodology/Principal Findings

Gene expression was analyzed by quantitative RT-PCR on islets isolated from 10-week-old diabetic GK and control Wistar rats. Furthermore, GK rats were treated s.c twice daily with IL-1Ra (Kineret, Amgen, 100 mg/kg/day) or saline, from 4 weeks of age onwards (onset of diabetes). Four weeks later, islet gene analysis and pancreas immunochemistry were performed. Thirty-two genes were selected encoding molecules involved in endothelial cell activation, particularly fibrinolysis, vascular tone, OS, angiogenesis and also inflammation. All genes except those encoding angiotensinogen and epoxide hydrolase (that were decreased), and 12-lipoxygenase and vascular endothelial growth factor (that showed no change), were significantly up-regulated in GK islets. After IL-1Ra treatment of GK rats in vivo, most selected genes implied in endothelium/OS/immune cells/fibrosis were significantly down-regulated. IL-1Ra also improved islet vascularization, reduced fibrosis and ameliorated glycemia.

Conclusions/Significance

GK rat islets have increased mRNA expression of markers of early islet endothelial cell activation, possibly triggered by several metabolic factors, and also some defense mechanisms. The beneficial effect of IL-1Ra on most islet endothelial/OS/immune cells/fibrosis parameters analyzed highlights a major endothelial-related role for IL-1 in GK islet alterations. Thus, metabolically-altered islet endothelium might affect the β-cell microenvironment and contribute to progressive type 2 diabetic β-cell dysfunction in GK rats. Counteracting islet endothelial cell inflammation might be one way to ameliorate/prevent β-cell dysfunction in type 2 diabetes.  相似文献   

9.
C-reactive protein (CRP) is significantly associated with the risk of ischemic cardiovascular disease in epidemiological studies. To explore if CRP has a functional role, we investigated its effect on the gene expression profile of vascular endothelial cells. Human vascular endothelial cells (human umbilical vein endothelial cells and human aortic endothelial cells) were incubated with CRP at various concentrations (0-10 mug/ml). Microarray analysis showed that a total of 11 genes increased (IL-8, core promoter element binding protein, activin A, monocyte chemoattractant protein 1, Exostoses 1, Cbp/p300-interacting transactivator with Glu/Asp-rich COOH-terminal domain 2, plasminogen activator inhibitor 1, fibronectin-1, gravin, connexin43, and sortilin-related receptor-1) and 6 genes decreased (methionine adenosyltransferase 2A, tryptophan-rich basic protein, reticulocalbin 1, membrane-associated RING-CH protein VI, cytoplasmic dynein1, and annexin A(1)) by more than twofold for their mRNA levels. IL-8 was the most significantly upregulated gene (13.6-fold), which demonstrated a clear dose- and time-dependent pattern revealed by quantitative real-time PCR. Cell adhesion assay showed that CRP enhanced the monocyte adhesion to endothelial cell monolayer by 2-fold (P < 0.01), which was partially blocked by an anti-IL-8 antibody (34.2% inhibition, P < 0.01). Inhibition of ERK MAPK pathway using U0126 prevented CRP-induced IL-8 upregulation, and Western blot analysis revealed a rapid activation of ERK1/2 after CRP stimulation. These data showed that CRP can significantly influence gene expressions in vascular endothelium. The CRP-responsive genes suggested that CRP may have a broad functional role in cell growth and differentiation, vascular remodeling and solid tumor development.  相似文献   

10.
11.
Viral promoters are commonly used as regulatory elements in gene therapy vectors due to their strong activity in various cell lines in vitro. However, transgene expression under the control of viral promoters in vivo has been shown to be limited to a short period of time. Several mechanisms for the transient expression of the delivered transgene may be important including deletion of transduced cells or promoter downregulation. Recently we reported that cytokines may either decrease or increase the activity of the human cytomegalovirus (hCMV) promoter in monocytes depending on the differentiation status of the transduced cells. For many applications, the gene of interest has to be delivered into an inflammatory milieu (tumour, ischaemia/reperfusion, vector-induced inflammation etc.). In this report we investigated the influence of various inflammatory cytokines on the hCMV-IE promoter activity in transduced human primary endothelial cells (Huvec) in vitro, which may be the first target cells after gene transfer into different organs. Cultured cells were infected with an E1-deleted adenoviral vector encoding for E. colibeta-galactosidase (Adbeta-gal) driven by the hCMV-IE promoter and incubated either with or without various cytokines. Our results indicate that interferon-gamma (IFN-gamma) and interleukin-10 (IL-10) downregulate promoter activity in endothelial cells whereas, in contrast, tumour necrosis factor (TNF-alpha), interleukin 1beta (IL-1beta) and interleukin 4 (IL-4) increased the promoter activity. These results suggest that inflammatory processes influence the in vivo expression of transferred viral promoter controlled genes of interest.  相似文献   

12.
Regulated expression of endothelial cell-derived lipase   总被引:12,自引:0,他引:12  
A lipoprotein lipase-like gene was recently cloned from endothelial cells. In vitro functional experiments have suggested that this endothelial-derived lipase (EDL) has phospholipase activity, and preliminary in vivo studies have suggested a role in the regulation of high-density lipoprotein metabolism. To investigate local control of lipase activity and lipid metabolism in the blood vessel wall, we have examined the regulation of EDL expression in cultured human umbilical vein and coronary artery endothelial cells. EDL mRNA levels were upregulated in both cell types by inflammatory cytokines implicated in vascular disease etiology, including TNF-alpha and IL-1beta. In addition, both fluid shear stress and cyclic stretch were found to increase the EDL mRNA levels in these cultured cells. This highly regulated expression of EDL in vascular endothelial cells suggests that this recently identified lipase is intricately involved in modulating vessel wall lipid metabolism and may play a role in vascular diseases such as atherosclerosis.  相似文献   

13.
14.
Oxidized low-density lipoprotein (Ox-LDL)-induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin-3 (Gal-3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal-3 in ox-LDL-mediated endothelial injury remains unclear. This study explores the effects of Gal-3 on ox-LDL-induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal-3, integrin β1, and GTP-RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non-AS control group. CCK8 assay and flow cytometry analysis showed that Gal-3 significantly decreased cell viability and promoted apoptosis in ox-LDL-treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP-RhoA, p-JNK, p-p65, p-IKKα, and p-IKKβ induced by ox-LDL was further enhanced by treatment with Gal-3. Pretreatment with Gal-3 increased expression of inflammatory factors (interleukin [IL]-6, IL-8, and IL-1β), chemokines(CXCL-1 and CCL-2) and adhesion molecules (VCAM-1 and ICAM-1). Furthermore, the promotional effects of Gal-3 on NF-κB activation and inflammatory factors in ox-LDL-treated HUVECs were reversed by the treatments with integrinβ1-siRNA or the JNK inhibitor. We also found that integrinβ1-siRNA decreased the protein expression of GTP-RhoA and p-JNK, while RhoA inhibitor partially reduced the upregulated expression of p-JNK induced by Gal-3. In conclusion, our finding suggests that Gal-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation.  相似文献   

15.
16.
Polymorphonuclear leukocytes (PMNs) are essential to innate immunity in humans and contribute significantly to inflammation. Although progress has been made, the molecular basis for termination of inflammation in humans is incompletely characterized. We used human oligonucleotide microarrays to identify genes encoding inflammatory mediators that were differentially regulated during the induction of apoptosis. One hundred thirty-three of 212 differentially expressed genes encoding proinflammatory factors, signal transduction mediators, adhesion molecules, and other proteins that facilitate the inflammatory response were down-regulated during the induction of apoptosis following PMN phagocytosis. Among these, 42 genes encoded proteins critical to the inflammatory response, including receptors for IL-8 beta, IL-10 alpha, IL-13 alpha 1, IL-15 alpha, IL-17, IL-18, C1q, low-density lipoprotein, IgG Fc (CD32), and formyl peptide, Toll-like receptor 6, platelet/endothelial cell adhesion molecule-1 (CD31), P-selectin (CD62), IL-1 alpha, IL-16, and granulocyte chemoattractant protein-2 were down-regulated. Many of these genes were similarly down-regulated during Fas-mediated or camptothecin-induced apoptosis. We used flow cytometry to confirm that IL-8R beta (CXCR2) and IL-1 alpha were significantly down-regulated during PMN apoptosis. We also discovered that 23 genes encoding phosphoinositide and calcium-mediated signal transduction components, which comprise complex pathways essential to the inflammatory response of host cells, were differentially regulated during PMN apoptosis. Importantly, our data demonstrate that PMNs down-regulate proinflammatory capacity at the level of gene expression during induction of apoptosis. These findings provide new insight into the molecular events that resolve inflammation following PMN activation in humans.  相似文献   

17.
18.
19.
20.
Lysophosphatidic acid (LPA) is a low-molecular-weight lysophospholipid (LPL), which regulates endothelial cells participating in inflammation processes via interactions with endothelial differentiation gene (Edg) family G protein-coupled receptors. In this study, we attempted to determine which LPA receptors mediate the inflammatory response in human endothelial cells. Introduction of siRNA against LPA1 significantly suppressed LPA-induced ICAM-1 mRNA, total protein, and cell surface expressions, and subsequent U937 monocyte adhesion to LPA-treated human umbilical endothelial cells (HUVECs). By knock down of LPA1 and LPA3 in HUVECs, LPA-enhanced IL-1β mRNA expression was significantly attenuated. Moreover, LPA1 and LPA3 siRNA also inhibited LPA-enhanced IL-1-dependent long-term IL-8 and MCP-1 mRNA expression, and subsequent THP-1 cell chemotaxis toward LPA-treated HUVEC-conditioned media. These results suggest that the expression of LPA-induced inflammatory response genes is mediated by LPA1 and LPA3. Our findings suggest the possible utilization of LPA1 or LPA3 as drug targets to treat severe inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号