首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

2.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

3.
Simulated mixed swards of perennial ryegrass (Lolium perenneL. cv. S23) and white clover (Trifolium repens L. cv. S100)were grown from seed under a constant 10°C day/8°C nighttemperature regime and their growth, and carbon and nitrogeneconomies examined. The swards received a nutrient solution,every second day, which contained either high (220 µgg–1) or low (40 µg g–1) nitrate N. The High-N swards had rates of canopy photosynthesis and drymatter production (over the linear phase of growth) similarto those previously shown by mixed swards at high temperature.The Low-N swards grew more slowly; canopy photosynthesis, ata given LAI, was similar to that at High-N but lower LAI's weresustained. Clover increased its contribution to total carbonuptake and total dry weight throughout the period in the Low-Ntreatment and, despite the fact that grass took up most of theavailable nitrate, clover maintained a consistently higher Ncontent by virtue of N2-fixation. At High-N, grass dominated throughout the measurement period.Earlier, when plants grew as spaced individuals, clover grewless well than grass, but once the canopy was closed it hada similar relative growth rate and thus maintained a steadyproportion of total sward dry weight. It is proposed that earlyin the development of the crop, leaf area production is thelimiting factor for growth, and that in this respect cloveris adversely affected by low temperature relative to grass.Later, as the LAI of the crop builds up, and the canopy becomesfully light intercepting, net canopy photosynthesis plays amore dominant role and here the higher photosynthetic rate perunit leaf area of the clover is crucial. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, low temperature, nitrogen, photosynthesis  相似文献   

4.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

5.
Photosynthesis by White Clover Leaves in Mixed Clover/Ryegrass Swards   总被引:1,自引:0,他引:1  
Measurements of rates of net photosynthesis were made on singleBlanca white clover leaves on plants taken from a field-grown,mixed clover/perennial ryegrass sward during two regrowth periods. Net photosynthesis fell by 20 per cent in the first measurementperiod as leaf area index increased and the grass componentof the crop flowered, but did not change significantly in thesecond measurement period during which the grass remained vegetative. Leaves which had been artificially protected from shading inthe sward did not have significantly different photosyntheticcapacities from leaves in the undisturbed sward, even in thefirst measurement period. As leaf area index and sward height increased, successive cloverpetioles were longer, keeping the newly expanded leaves nearthe top of the sward where they received full light. It is suggestedthat it is this which allows successive clover leaves, unlikethose of vegetative grasses, to attain a high photosyntheticcapacity throughout a growth period. Trifolium repens, Lolium perenne, Photosynthetic capacity, shading, growth  相似文献   

6.
Clonal plants of white clover (Trifolium repens L ), whollydependent on N2 fixation, were grown for 6 weeks in controlledenvironments providing either (C680 regime) 23/18 °C day/nighttemperatures and a CO2, concentration of 680 µmol mol–1,or (C340 regime) 20/15 °C day/night temperatures and a CO2,concentration of 340 µmol mol–1 During the firsthalf of the experimental period the C680 plants grew fasterthan their C340 counterparts so that by week 3 they were twicethe weight this 2 1 superiority in weight persisted until theend of the experiment The faster initial growth of the C680plants was based on an approx 70 % increase in leaf numbersand an approx 30 % increase in their individual area Initially,specific leaf area (cm2 g–1 leaf) was lower in C680 thanin C340 leaves but became similar in the latter half of theexperiment Shoot organ weights, including petioles and stolons,reflected the C680 plant's better growth in terms of photosyntheticsurface Throughout, C680 plants invested less of their weightin root than C340 plants and this disparity increased with timeAcetylene reduction assays showed that nitrogenase activityper unit nodule weight was the same in both C680 and C340 plantsBoth groups of plants invested about the same fraction of totalweight in nodules Nitrogen contents of plant tissues were similarirrespective of growth regime, but C680 expanded leaves containedslightly less nitrogen and their stolons slightly more nitrogenthan their C340 counterparts However, C680 leaves containedmore non-structural carbohydrate Young, unshaded C680 leavespossessed larger palisade cells, packed more tightly withinthe leaf, than equivalent C340 leaves The reason for the C680regime's loss of superiority in relative growth rate duringthe second half of the experiment was not clear, but more accumulationof non-structural carbohydrate, constriction of root growthand increased self-shading appear to be the most likely causes Trifolium repens, white clover, elevated CO2, elevated temperature, growth, N2 fixation, leaf structure  相似文献   

7.
The morphology of white clover is very sensitive to the lightenvironment, especially to the ratio of red:far-red light andto photon irradiance. However, less is known about the effectsof blue light on clover morphogenesis. Cuttings of white cloverwere grown for 56 d in two controlled chambers receiving lightwith similar photosynthetic efficiency and phytochrome photoequilibriumstate but different levels of blue light: some plants were grownunder orange light (very low blue light, 0.02 µmol m-2s-1)or under white light containing blue light (83 µmol m-2s-1).Other plants were switched from white light to orange lightorvice versa,after 30 d. The absence of blue light modifiedthe growth habit of clover and raised the laminae in the upperlayer of the canopy by increasing petiole length, and petioleangle from the horizontal, and by raising stolons above theground surface. Moreover, the absence of blue light had no effecton total leaf area and total dry weight per plant, but increasedthe leaf area and biomass of petioles of the main axis. Largerpetioles and laminae were associated with the allocation ofmore dry weight to the petiole at the same petiole thicknessbut with thinner laminae. These results indicate that a decreasein blue light is involved in the perception of, and adaptationto, shading by the plant.Copyright 1997 Annals of Botany Company Biomass allocation; blue light; growth habit; leaf area; light quality; photomorphogenesis; Trifolium repensL.; white clover  相似文献   

8.
The aim of this study was to examine the potential for lightacclimation in shade grown seedlings of Bischofia javanica Blume.The seedlings were grown under simulated forest shade light(40 µmol m–2 s–1), and after transfer to ahigher light level (1200 µmol m–2 s–1), chlorophyllfluorescence induction kinetics, net photosynthesis, and changesin leaf chlorophylls and leaf anatomy were examined in leavesthat were fully developed prior to the transfer. The low-light (LL) leaf displayed photoinhibition immediatelyafter transfer to high-light (HL). This photo-inhibition wassubstantial, and continued for several days. Chlorophyll bleachingoccurred only after a certain degree of photoinhibition hadproceeded. Photosynthetic light acclimation commenced immediatelyafter severe photoinhibition. An increase in chlorophylls perunit leaf area was also immediate after severe bleaching. Thechanges in leaf chlorophylls over time were consistent withthe visual observations of bleaching and recovery. The leafweight per unit leaf area increased gradually on transfer toHL and finally it approached that of the newly formed HL leaf.Although fully expanded prior to transfer to HL, the leaf thicknesswas increased by about 45% and the leaf tissues became denserwithout changing the leaf area and the stomatal density. Finally,the net photosynthetic rate per unit leaf area was higher thanthat before exposure by 75% but less than that of newly formedHL leaf by more than 30%. Moreover, leaf movements were observedafter exposure to HL and also the formation of short epicormicshoots with a cluster of small leaves on the lower part of thestem during light acclimation. It is concluded that the fully expanded shade leaf has a wideacclimation plasticity. In addition to leaf acclimation, wholeplant responses such as leaf movements, the formation of epicormicshoots and the production of new ‘sun-type’ leavesunder HL may be of crucial importance to the success of thespecies following opening of the canopy. Photoinhibition, light acclimation, photosynthesis, fluorescence, tropical trees, shade, Bischofia javanica  相似文献   

9.
WOLEDGE  J. 《Annals of botany》1979,44(2):197-207
The photosynthetic capacity of newly expanded leaves of vernalizedor non-vernalized plants of S24 perennial ryegrass (Lolium perenneL.), grown in long or short photoperiods, was measured in twoexperiments. In the first, leaves were protected from shadingduring development, while in the second, the natural shade ofneighbouring tillers in a sward was allowed. In the first experiment there was little effect of vernalization,day length or flowering, and leaves in all treatments had photosyntheticrates at 250 W m–2 of between 28 and 32 mg CO2 dm–2h–1.In the second experiment the photosynthetic rate of successiveleaves fell as sward leaf area increased. This downward trendwas reversed, however, in flowering tillers in the vernalizedlong-day treatment, while in the other treatments, which didnot flower, photosynthetic capacity continued to fall. It isconcluded that the leaves of reproductive tillers have highphotosynthetic capacities because stem extension carries themto the top of the canopy where they are well illuminated duringexpansion. Lolium perenneL, ryegrass, photosynthetic capacity, flowering, shading, vernalization  相似文献   

10.
KAMALUDDIN  M.; GRACE  J. 《Annals of botany》1992,69(6):557-562
Acclimation of fully developed leaves of Bischofia javanicaBlume to shadelight was examined. Seedlings were grown undersimulated daylight (1000 µmol m–2 s–1), thentransferred to a simulated shadelight (40 µmol m–2s–1). When a high-light leaf was transferred to low light, large negativenet photosynthetic rates (Pm) were recorded. This decrease wasrapid, but within 7 d the rate increased and became equal tothe low-light control leaf. These changes in photosynthesisdid not follow the pattern of changes in stomatal conductance(gs). Transfer to the low light resulted in a dramatic decreasein leaf weight per unit area (Lw), and most of the decreasesin Lw occurred within 3 d of transfer when the Pm of the transferredleaf was well below that of the low-light control leaf. There was a significant decrease in chlorophyll a in the transferredleaf without an appreciable change in chlorophyll b resultingin a large decrease in the chlorophyll a to chlorophyll b ratio.Leaf chlorophylls per unit area were higher in the transferredleaf than the low-light control leaf. Maximum photosyntheticrate in the transferred leaf was decreased by 40% compared tothat for the high-control leaf, but was almost at the same extenthigher than the low-light control leaf The results are discussedin the context of carbon gain capacity of its seedlings underlight-limiting forest understorey habitats. Bischofia, chlorophylls, light, photosynthesis, shade acclimation, tree seedlings, tropical tree  相似文献   

11.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

12.
White clover (Trifolium repens L.) and Perennial ryegrass (Loliumperenne L.) plants were grown, in Perlite, in simulated swardsas either monocultures or mixtures of equal plant numbers. Theywere supplied with a nutrient solution either high (220 µgg–1) or low (40 µg g–1) in 15N-labelled nitrateand grown to ceiling yield at either high (20°C day/15°Cnight) or low (10°C day/8°C night) temperature. Temperature had little effect on the maximum rates of grosscanopy photosynthesis which were similar in High-N grass andHigh-N and Low-N clover monocultures. However these maxima werereached more slowly in clover than grass, and more slowly atlow rather than high temperature. Nitrogen supply increasedphotosynthesis in grass but not in clover. Clover had higherN contents than grass in all four treatments, although in anygiven treatment its N content was lower, and contribution ofN2-fixation relative to nitrate uptake higher, in mixture thanin monoculture. Conversely, grass had higher N contents in mixturethan monoculture, because more nitrate was available per plantand not because of transfer of biologically fixed N from clover. Under Low-N, clover outyielded grass in mixture, particularlyat high temperature. The grass plants in the Low-N mixtureshad higher N contents and higher SLA, LAR and shoot: root ratiosthan those in monoculture. It is proposed that competition forlight is the cause of the low relative yield and negative aggressivityof grass in these swards. Under High-N, grass outyielded cloverin monoculture and mixture, at both temperatures but particularlyat low temperature when grass had a high aggressivity. Nitrogenand yield component analyses shed no light on clover's apparentlylow competitive ability and evidence is drawn from the previouspaper to demonstrate that grass grew faster than clover onlyas spaced individuals during non-com petitive growth. The relativemerits of measures of competitive ability based on final harvestdata and physiological data taken over a growth period are discussed. Trifolium repens L., white clover, Lolium perenne, perennial ryegrass, competition, temperature, nitrogen  相似文献   

13.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

14.
Light Distribution and Photosynthesis in Field Crops   总被引:7,自引:1,他引:6  
In a new model of light distribution in field crops a parameters is the fraction of light passing through unit leaf layer withoutinterception. Radiation profiles measured with solarimetersand photocells give values of s from 0.7 for grasses to 0.4for species with prostrate leaves. Knowing s, leaf transmissionT and leaf-area index L the light distribution in a field cropmay be described by a binomial expansion of the form {s+(I-s)T)L.To calculate crop photosynthesis at given light intensity thisexpansion is combined with two parameters describing the shapeof the light-response curve of single leaves. Finally, the assumptionthat solar radiation varies sinusoidally allows daily totalphotosynthesis to be estimated from daylength and insolation. The theory predicts about the same potential photosynthesisin a cloudy temperte climate with long days as in a more sunnyequatorial climate with short days. When L < 3 photosynthesisincreases as s decreases, i.e. as leaves become more prostrate;but when L > 5, photosynthesis increases as s increases,i. e. as leaves become more erect. Assuming that respirationis proportional to leaf area, estimated dry-matter productionagrees well with field measurements on sugar-beet, sugar-cane,kale, and subterranean clover. Estimates of maximum gross photosynthesis(for sugar-cane and maize) range from 60 to 9 g m–2 day–1depending on insolation.  相似文献   

15.
Single plants of white clover (Trifolium repens L.) were grownfrom stolon cuttings rooted in sand. All plants were inoculatedwith Rhizobium trifolii, and for 14 weeks received nutrientsolution containing 0.5 mg N each week, as either ammonium ornitrate. Plants were then leniently defoliated or were leftintact and a 15N-labelled N source was applied at intervalsof 4 d to replace the unlabelled N. Lement defoliation removedfully expanded leaves only; the remaining immature leaves accountedfor 39–44% of the total. At harvests over the following21 d, leaf numbers were counted and dry matter (DM), N contentsand 15N enrichments of individual plant organs were determined. Rates of leaf emergence and expansion were accelerated in defoliatedplants; numbers of young leaves were similar in defoliated andintact plants. Total DM and N content were less in defoliatedthan intact plants and were not affected by form of N supplied.DM of young leaves, growing points and stolons and N contentof young leaves were, however, greater when ammonium ratherthan nitrate N was supplied. Rates of increase in the contentof plant total N were 8.2 ± 1.36 mg N d-1 and 10.2±1.82 mg N d-1 in defoliated and intact plants respectively.The increases were predominantly due to N2 fixation, since recoveryof 15N showed that less than 1% of the increment in plant totalN was assimilated mineral N. Nevertheless, the contributionof mineral N to plant total N was 50% more in defoliated thanin intact plants; higher amounts of mineral N were found particularlyin young leaves and growing points. Partitioning of mineralN to nodulated roots increased over time and was greater whenammonium rather than nitrate N was present. White clover, Trifolium repens L. cv. S184, lenient defoliation, N accumulation, N2 fixation  相似文献   

16.
Single plants of white clover (Trifolium repens) were establishedfrom stolon cuttings rooted in acid-washed silver sand. Allplants were inoculated with Rhizobium trifolii, and receivednutrient solution containing 0·5 mg 15N as either ammoniumor nitrate weekly for 12 weeks (i.e. 6 mg 15N in total). Plantswere then leniently defoliated or left intact, and the labelledN supply was replaced with unlabelled N. Lenient defoliationremoved fully expanded leaves only, leaving immature leaveswhich accounted for 50–55% of the total; growing pointnumbers were not reduced. Nodules, leaves and growing pointswere counted over the following 21 d period, and d. wts, N contents,and 15N enrichments of individual plant organs were determined. Defoliated plants had fewer nodules, but numbers of growingpoints were unaffected by defoliation. The rates of both leafemergence and expansion were accelerated in defoliated plants;in consequence the number of young leaves remained less thanin intact plants until day 21. Total dry matter (DM) and N accumulationwere less in defoliated plants, and a greater proportion oftotal plant DM was invested in roots. About 97 % of plant totalN was derived from fixed atmospheric N, but there was incompletemixing of fixed and mineral N within the plant. Relatively moremineral N was incorporated into roots, whereas there was relativelymore fixed N in nodules. There was isotopic evidence that Nwas remobilized from root and stolon tissue for leaf regrowthafter defoliation; approximately 2 % of plant N turned overdaily in the 7-d period after defoliation, and this contributedabout 50% of the N increment in leaf tissue. White clover, Trifolium repens L. cv. SI84, lenient defoliation, N economy, regrowth, N remobilization  相似文献   

17.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

18.
Changes in carbon fixation rate and the levels of photosyntheticproteins were measured in fourth leaves of Lolium temulentumgrown until full expansion at 360 µmol quanta m–2s–1 and subsequently at the same irradiance or shadedto 90 µmol m–2 s–1. Ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco), light-harvesting chlorophylla/b protein of photosystem II (LHCII), 65 kDa protein of photosystemI (PSI), cytochrome f (Cytf) and coupling factor 1 (CF1) declinedsteadily in amount throughout senescence in unshaded leaves.In shaded leaves, however, the decrease in LHCII and the 65kDa protein was delayed until later in senescence whereas theamount of Cyt f protein decreased rapidly following transferto shade and was lower than that of unshaded leaves at the earlyand middle stages of senescence. Decreases in the Rubisco andCF1 of shaded leaves occurred at slightly reduced rates comparedwith unshaded leaves. These results indicate that chloroplastproteins in fully-expanded leaves are controlled individually,in a direction appropriate to acclimate photosynthesis to agiven irradiance during senescence. (Received August 20, 1992; Accepted January 5, 1993)  相似文献   

19.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

20.
The assimilation of carbon (C) by, and distribution of 14C from,leaves at each end of an unbroken sequence of ten mature leaveson the main stolon of clonal plants of white clover (Trifoliumrepens L.) were measured to identify intra-plant factors determiningthe direction of C movement from leaves. Leaves at two intermediatepositions were also measured. Localized movement of 14C to sinks at the same node as, or atthe one to two nodes immediately behind, the fed leaf accountedfor 40–50% of the total 14C exported by all measured leaves.A further 50–60% of exported 14C was therefore availablefor more-distant sinks, and the direction of translocation ofthis C was determined by the relative total strength or demand(number x size x rate of activity or growth) of sinks forwardof, or behind, the leaf in question. Thus 85% of the 14C exportedfrom the youngest measured leaf moved toward the base of thestolon, while about 60% of the 14C exported from the oldestleaf moved acropetally. Defoliating plants to leave just one mature leaf on the mainstolon (at any one of the same four positions studied in undefoliatedplants), and no leaves on branches, resulted in: (1) increasednet photosynthetic rate in all residual leaves: (2) increased%export of fixed C from one of the four leaves; (3) increasedexport to the main stolon apex from all except the eldest leaf;(4) increased export to branches from three of the four leaves;and (5) decreased export to stolon tissue and roots from allleaves, within 3 d of defoliation. These responses would seemto ensure the fastest possible replacement of lost leaf areaand, thus, restoration of homeostatic growth. The observed patternsof C assimilation and distribution in both undefoliated anddefoliated white clover plants are consistent with the generalrules of source-sink theory; the distance between sources andcompeting sinks, and relative sink strength, emerge as the mostimportant intra-plant factors governing C movement. These resultsemphasize the need to consider plant morphology, and the modularnature of plant growth, when interpreting patterns of resourceallocation in clonal plants, or plant responses to stressessuch as partial defoliation. Trifolium repens L, white clover, photosynthesis, assimilate translocation, defoliation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号