首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A superfusion system was used to study the effects of excitatory amino acids (EAA) on release of [3H]dopamine ([3H]DA) previously taken up by rat substantia nigra (SN) slices. The EAA tested (20-250 microM), with the exception of quisqualate and kainate, markedly evoked [3H]DA release from nigral slices when Mg2+ ions were omitted from the superfusion medium. The EAA receptor agonists exhibited the following relative potency in stimulating [3H]DA release: L-glutamate (L-Glu) greater than N-methyl-D-aspartate (NMDA) greater than NM(D,L)A greater than D-Glu much greater than quisqualate = kainate. D-2-Amino-5-phosphonovalerate (100-200 microM), an antagonist for NMDA receptors, substantially reduced [3H]DA release evoked by L-Glu or NMDA. In contrast, L-Glu diethyl ester (100-200 microM) produced a lesser blocking effect on [3H]DA release evoked by the EAA. Further experiments showed that the NMDA-mediated release of [3H]DA was totally suppressed by the omission of Ca2+ or by the addition of tetrodotoxin (0.1 microM) to the superfusion medium. In addition, strychnine, an antagonist for glycine (Gly) receptors, significantly decreased NMDA (100 microM)-evoked as well as glycine (100 microM)-evoked release of [3H]DA from nigral slices. The results shown support the idea that activation of NMDA subtype receptors in SN may trigger a Ca2+-dependent release of DA from dendrites of nigro-striatal DA-containing neurons. Furthermore, a transsynaptic mechanism that may partially involve Gly-containing interneurons is proposed to account for some of the events mediating NMDA receptor activation and DA release in SN.  相似文献   

2.
帕金森病模型大鼠脑内多巴胺与铁含量的关系   总被引:12,自引:2,他引:10  
Jiang H  Chen WF  Xie JX 《生理学报》2001,53(5):334-338
实验采用原子吸收分光光度法,快速周期伏安法,高效液相电化学检测等方法,研究以6-羟基多巴(6-OHDA)制备的帕金森病(PD)模型大鼠黑质内铁含量的变化。铁对多巴胺(DA)能神经元的直接毒性作用以及铁离子螯合剂甲磺酸去铁胺的神经保护作用。结果发现:(1)PD大鼠损毁侧黑质内铁含量为非标准PD大鼠的3倍左右;(2)PD大鼠损毁侧纹状体内铁含量无明显改变;(3)单纯注射6-OHDA的大鼠其损毁侧纹状体(CPu)DA的释放量和含量均明显降低;(4)侧脑室预先注射甲磺酸去铁胺,再重复上述实验,损毁侧CPu DA释放量和含量均无明显改变;(5)单侧黑质内注射40ug FeCl3后,大鼠损毁侧CPu内DA释放量和含量显著降低。上述结果提示,6-OHDA可导致CPu DA释放量及含量减少,此过程有铁的参与。由于铁可导致DA神经元死亡,因此铁含量的增加可能是DA含量减少的原因之一,甲磺酸去铁胺具有保护DA神经元的作用。  相似文献   

3.
In an attempt to examine some functional characteristics of the N-methyl-D-aspartate (NMDA) receptor complex, the NMDA-evoked effluxes of endogenous dopamine (DA) and [3H]acetylcholine ([3H]ACh) were simultaneously examined in a rat Striatal slice preparation. NMDA induced release of both DA and ACh in a concentration-dependent, Ca2+-, Mg2+-, and tetrodotoxin-sensitive manner. These release responses were remarkably reduced by long-term pre-treatment with a low concentration of NMDA. an indication of the desensitization of the NMDA receptor. Glycine was potent in reversing the desensitization-related reduction of DA release but failed to reverse the diminution of ACh release in the same slices. Our results indicate that the NMDA receptors regulating the release of DA and ACh are different with respect to their glycine modulatory site. This finding is consistent with a functional heterogeneity of the NMDA receptor complex in the rat striatum.  相似文献   

4.
Abstract: In vivo electrochemical detection with a Nafion-coated carbon fiber working electrode, which provides information on the spatial and temporal dynamics of dopamine overflow, was used to investigate the involvement of nitric oxide (NO) in the dopaminergic transmission in the striatum of urethane-anesthetized Sprague-Dawley rats. A mixture of N -methyl- d -aspartate (NMDA) and nomifensine, a dopamine uptake blocker, was locally pressure-ejected to elicit a transient dopamine overflow from the dopamine-containing nerve terminals in the striatum. Local application of N ω-nitro- l -arginine methyl ester ( l -NAME), which blocks endogenous NO formation, increased the magnitude of dopamine release evoked by a subsequent NMDA and nomifensine application but resulted in no significant alteration in the time course. Furthermore, microejection of l -arginine, an NO precursor, or sodium nitroprusside (SNP), an NO generator, did not cause detectable changes in dopamine level in the striatal extracellular space. However, NMDA-induced dopamine release was profoundly inhibited with l -arginine or SNP pretreatment. In addition, NO affects dopamine uptake in rat striatum. Exogenous dopamine applied through a micropipette, reversibly and reproducibly, elicited an electrochemical signal. The time course of these signals was significantly prolonged by l -NAME treatment. These data suggest that NO is diversely involved in regulating dopaminergic transmission in rat striatum.  相似文献   

5.
The N-methyl-D-aspartate (NMDA) receptor-mediated regulation of the release of newly synthesized [3H]dopamine [( 3H]DA) was studied in vitro, both on rat striatal slices using a new microsuperfusion device and on rat striatal synaptosomes. Under Mg2(+)-free medium conditions, the NMDA (5 X 10(-5) M)-evoked release of [3H]DA from slices was found to be partly insensitive to tetrodotoxin (TTX). This TTX-resistant stimulatory effect of NMDA was blocked by either Mg2+ (10(-3) M) or the noncompetitive antagonist MK-801 (10(-6) M). In addition, the TTX-resistant NMDA-evoked response could be potentiated by glycine (10(-6) M) in the presence of strychnine (10(-6) M). The coapplication of NMDA (5 X 10(-5) M) and glycine (10(-6) M) stimulated the release of [3H]DA from striatal synaptosomes. This effect was blocked by Mg2+ (10(-3) M) or MK-801 (10(-5) M). These results indicate that some of the NMDA receptors involved in the facilitation of DA release are located on DA nerve terminals. These presynaptic receptors exhibit pharmacological properties similar to those described in electrophysiological studies for postsynaptic NMDA receptors.  相似文献   

6.
Previously we observed that Nomega-nitro-L-arginine methyl ester (l-NAME) decreased the striatal dopamine (DA) release in microdialysis experiments and this effect was completely diminished in the presence of the DA uptake inhibitor nomifensine, indicating that the effect was mediated via the DA transporter. The aim of the present work was to study the direct effect of nitrergic compounds on DA uptake. We measured the uptake of [3H]DA in striatal slices and found that the nitric oxide (NO) generator sodium nitroprussid (100 microM) decreased the uptake by 66%. In contrast, the NO synthase inhibitor L-NAME (100 microM) increased the DA uptake by 80%, while the inactive D-NAME had no effect on uptake. Our data indicate that NO exerts an inhibitory effect on DA transporters. Since the production of NO by neuronal NO synthase is closely related to the activation of NMDA receptors, the level of NO around synapses reflects the activity of glutamatergic neurotransmission. The strength of excitatory input, therefore, can be nonsynaptically signaled by NO to the surrounding dopaminergic neurons via the inhibitory tone on transporters. The concomitant elevation of DA concentration around the activated synapse represents the response of dopaminergic system, which can adapt to the changing excitatory activity without receiving glutamatergic input and without expressing glutamate receptors. Thus, the effect of NO on transporters represents a new form of interneuronal communication, a nonsynaptic interaction without receptors.  相似文献   

7.
Summary In vivo voltammetry was used in freely moving rats to study the processes whereby striatal dopamine (DA) release is regulated by corticostriatal glutamatergic neurons. Electrical stimulation of the cerebral cortex was found to markedly increase the striatal DA-related voltammetric signal amplitude. Similar enhancements have been observed after intracerebroventricular administration of 10nmoles glutamate, quisqualate and AMPA, whereas NMDA was found to decrease the amplitude of the striatal signals. The NMDA receptor antagonist APV did not significantly affect the voltammetric signal but prevented the NMDA-induced depression of the DA-related signals. These data are in agreement with those obtained in numerous previous studies suggesting that the glutamatergic corticostriatal neurons exert activatory effects on the striatal DA release via non-NMDA receptors. The mechanism involved might be of a presynaptic nature. The role of the NMDA receptors may however consist of modulating the dopaminergic transmission phasically and in a depressive way, which would be consistent with behavioural data suggesting the existence of a functional antagonism between the activity of the corticostriatal glutamatergic and nigrostriatal dopaminergic systems.Abbreviations Glu glutamate - DA dopamine - NMDA N-methyl-D-aspartate - CPP 3-(2-carboxypiperazin-4µl)propyl-1-phosphonic acid - AMPA -amino-3-hydroxy-5-metylisoxazole-4-propionic acid - APV aminophosphonovaleric acid - DOPAC dihydroxyphenylacetic acid - HVA homovanillic acid - DARPP 32 dopamine-cAMP-regulated phosphoprotein 32 - CSF cerebrospinal fluid Laboratory associated with the University of Aix-Marseille II  相似文献   

8.
Abstract: The effects of NMDA and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on endogenous acetylcholine release from rat striatal slices and synaptosomes were investigated. Both agonists (1–300 µ M ) facilitated acetylcholine release from slices in a dose-dependent manner. NMDA (100–300 µ M ) and AMPA (30–300 µ M ), however, subsequently inhibited acetylcholine release. NMDA (100 µ M )-induced facilitation was antagonized by 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and dizocilpine (both 1–10 µ M ), whereas the 10 µ M AMPA effect was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1–30 µ M ). NMDA (100 µ M )-induced inhibition was counteracted by CPP, but not dizocilpine, and by the nitric oxide synthase inhibitor l -nitroarginine (1–100 µ M ). Tetrodotoxin (0.5 µ M ) prevented the facilitatory effect of 3 µ M NMDA and AMPA, but left unchanged that of 30 µ M NMDA and 100 µ M AMPA. Acetylcholine release from synaptosomes was stimulated by KCI (7.5–100 m M ) in a dose-dependent manner. NMDA and AMPA maximally potentiated the 20 m M KCl effect at 1 µ M and 0.01 µ M , but were ineffective at 100 µ M and 10 µ M , respectively. Inhibition of acetylcholine release was never found in synaptosomes. The effects of 1 µ M NMDA and 0.01 µ M AMPA were antagonized by CPP (0.0001–1 µ M ) or dizocilpine (0.0001–10 µ M ) and by CNQX (0.001–1 µ M ), respectively. These data suggest that glutamatergic control of striatal acetylcholine release is mediated via both pre- and post-synaptic NMDA and non-NMDA ionotropic receptors.  相似文献   

9.
It is becoming apparent that the synthesis of nitric oxide (NO) from L-arginine not only explains endothelium-dependent vascular relaxation, but is a widespread mechanism for the regulation of cell function and communication. We examined the role of NO on the endogenous dopamine (DA) release from rat striatum. Nitroprusside, in the concentration range of 3-100 microM, induced a dose-dependent increase in the endogenous DA release from rat striatal slices. The maximal response was 330% over the baseline release. A higher concentration of nitroprusside (300 microM) produced an inhibitory effect on the spontaneous release of DA. L-Arginine (10 and 100 microM), a substrate in the NO-forming enzyme system, also produced an elevation of DA release. L-Arginine-induced DA release was attenuated by NG-monomethyl-L-arginine, an inhibitor of NO synthase. NADPH (1 microM), a cofactor of NO synthase, enhanced L-arginine-induced DA release. These results suggest a possible involvement of NO in the DA release process in rat striatum.  相似文献   

10.
The technique of in vivo voltametry and a paired recording paradigm were employed to study the age-related changes in N-methyl-d-aspartate (NMDA) function in regulating the striatal dopaminergic transmission in male Sprague-Dawley rats. Microinjection of NMDA (100pmol) consistently elicited larger striatal dopamine (DA) overflows from young rats (3-4 months old) than from aged rats (27-28 months old). Furthermore, the rate of clearance (T(c)) of the NMDA-evoked dopamine release was lower in the aged rats. Local application of dopamine evoked reversible electrochemical signals with similar amplitudes in both young and aged rats. However, T(c) was reduced and time course parameters were prolonged in the aged rats. While microejection of NMDA (1pmol) did not induce any dopamine overflow, simultaneous administration of NMDA and K(+) evoked larger dopamine releases than K(+) alone in the young striatum. Concomitant application of NMDA did not potentiate the K(+)-evoked dopamine release in the aged striatum. Taken together, with the reduced dopamine release in response to depolarizing stimuli, our in vivo electrochemical data suggest that age-related changes in NMDA function contribute to the impaired dopaminergic dynamics, including an attenuation of NMDA-evoked dopamine release and a diminished augmentation by K(+) of NMDA-induced dopamine release during the normal aging process.  相似文献   

11.
12.
Abstract: The neuronal nitric oxide (NO) synthase generates NO from arginine. NO mediates its physiological effects mainly by stimulating the synthesis of cyclic GMP. We have investigated the role of the arginine availability on the NMDA-induced cyclic GMP accumulation in immature rat brain slices. The effect of NMDA was blocked by the inhibitor of the NO synthase, N G-nitro- l -arginine, and by the antagonist of ionotropic non-NMDA receptors, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). This inhibition was not due to a direct interaction of CNQX with the NMDA receptor, and it was overcome by the presence of exogenously applied arginine. CNQX also blocked the NMDA-evoked release of [3H]arginine from cerebellar slices. Moreover, the arginine uptake inhibitor l -lysine reduced the cyclic GMP response to NMDA significantly. Therefore, the extracellular arginine availability, which is dependent on the activation of ionotropic non-NMDA receptors, determines the rate of the NO biosynthesis by the neuronal NO synthase. Together with the reported release of arginine from glial cells upon activation of glial ionotropic non-NMDA receptors and the predominant glial localization of arginine, these data provide the first evidence of an essential role of the arginine transfer from glial cells to neurons for the biosynthesis of NO.  相似文献   

13.
The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry. Impulse-dependent DA release, evoked by a single electrical pulse, was lower in homozygous (116 nm) than wild-type mice (351 nm) indicating smaller vesicular DA stores, an observation supported by the evanescent effect of amfonelic acid (300 nm) in homozygous mice. Amphetamine (2 microm) increased extracellular DA via DAT reversal in both wild-type (by 459 nm) and VMAT2 mutant (by 168 nm, p < 0.01 vs. wild-type) mice. In both cases, the effect was blocked by the DAT inhibitor GBR12935 (1 microm). Simultaneously, amphetamine decreased impulse-dependent DA release, albeit less in homozygous (by 55%) than in wild-type (by 78%) mice. In wild-types, this decrement was largely reversed by GBR12935 but not by the D2/D3 autoreceptor antagonist (-)sulpiride (1 microm). Conversely, in homozygous VMAT2 mutant mice, it was attenuated by (-)sulpiride but not GBR12935. The D2/D3 receptor agonist quinpirole inhibited impulse-dependent DA release with a lower EC50 value in homozygous mice (12 nm) compared with wild-types (34 nm), indicating the compensatory presence of functionally supersensitive release-regulating autoreceptors. However, analysis of DA reuptake kinetics obtained in the absence and presence of DAT blockade (by cocaine and amfonelic acid) revealed only minor differences in DAT functionality. These results demonstrate that impaired vesicular DA storage constrains extracellular DA levels in the dorsolateral CPu whether induced by either impulse-dependent or carrier-mediated mechanisms and that the relative importance of the DAT and terminal autoreceptors as control mechanisms in the actions of amphetamine are reversed in VMAT2 mutant mice.  相似文献   

14.
快速周期伏安法在定量研究脑内核团多巴胺释放中的应用   总被引:4,自引:0,他引:4  
目的和方法:采用快速周期伏安法(FCV)在体研究电刺激内侧前脑束(MFB)或腹侧背盖区(VTA)诱发的纹状体(CPu)、伏核(Acb)或中央杏仁核(CAN)多巴胺(DA)释放的特点,探索电刺激诱发不同核团DA释放的适宜刺激参数。结果:CPu、Acb与CAN的DA释放量及释放动力学特征均有不同。结论:在应用FCV技术研究脑内不同部位DA释放时,应重视适宜刺激参数的选择及运用,以获取更好的实验结果。  相似文献   

15.
Cocaine inhibits tritium-labeled dopamine ([3H]DA) uptake in rat (IC50 approximately 400 nM) and sheep (IC50 approximately 1 microM) striatum. GBR 12909, a selective DA uptake inhibitor, potently inhibits [3H]DA uptake in rat (IC50 less than 10 nM), but is less effective (only 60% of the uptake is inhibited at a concentration of 10 microM) and less potent (IC50 approximately 300 nM) in sheep. [3H]DA release from slices of rat or sheep striatum is stimulated by potassium (15-50 mM). In the presence of nomifensine (10 microM), cocaine (10 microM) had no effect on potassium-stimulated [3H]DA release in either species. [3H]DA release is increased by N-methyl-D-aspartate (NMDA) (10-1000 microM) in rat striatum but NMDA did not stimulate [3H]DA release in sheep striatum. These findings suggest that NMDA receptors either are absent from or do not regulate release of preloaded [3H]DA in sheep striatum.  相似文献   

16.
Abstract: NMDA receptor stimulation concomitantly increases the release of [14C]acetylcholine and [3H]spermidine from rat striatal slices in vitro. The NMDA-induced release of both acetylcholine and spermidine was blocked with equal potency by the NMDA channel blocker phencyclidine (0.1–10 µ M ). However, certain other channel blockers, including dextromethorphan (1–100 µ M ), which antagonized NMDA-evoked acetylcholine release without affecting NMDA-evoked spermidine release, and dextrorphan (1–100 µ M ) and memantine (1–100 µ M ), which block NMDA-evoked acetylcholine release more potently than NMDA-evoked spermidine release, showed greater selectivity of action. As previously shown for ifenprodil, eliprodil (SL82.0715; 1–100 µ M ) blocked NMDA-evoked acetylcholine but not spermidine release. This selectivity is also observed for other agents interacting with the polyamine site(s) on the NMDA receptor, including arcaine (1–1,000 µ M ), philanthotoxin343, and argiotoxin636 (10 µ M ) and was also noted for desipramine (1–100 µ M ). The NMDA-induced release of acetylcholine and spermidine is likely to be mediated by different native NMDA receptor subtypes, and several NMDA antagonists may be candidates for a selective action at a particular NMDA receptor subtype.  相似文献   

17.
Serosal mast cells (MC) from 6 month old spontaneously hypertensive rats (SHR) were compared to MC from 6 month old Wistar Kyoto rats (WKYR) for their ability to release nitric oxide (NO). The relationship between histamine release and NO-like activity from these cells was also investigated. MC from SHR released less NO-like factor than MC from WKYR as assessed by the use of platelet aggregation and soluble guanylate cyclase activation as bioassays for NO. Sodium nitroprusside elevated the concentrations of cGMP to a similar extent in MC from SHR or WKYR. No changes in the levels of cAMP were observed. The release of histamine from MC induced by compound 48/80 or the calcium ionophore A23187 was greater in MC from SHR than in MC from WKYR. Thus, MC from SHR show a decreased production of NO-like activity which is reflected by a decreased ability to inhibit platelet aggregation. The decreased production of cGMP in the MC leads to an increased stimulated release of histamine.  相似文献   

18.
Abstract: Superfused rabbit neostriatal slices prelabeled with [3H]dopamine ([3H]DA) were depolarized with electrical pulses (12 V, 1 ms). Although transmitter release showed a proportional increase with a greater number of pulses (30-360 pulses), flat frequency-release curves were obtained. Haloperidol (0.03–0.3 μ m ) enhanced 3H overflow without affecting its metabolism or time course, and antagonized apomorphine-induced inhibition of transmitter release. Maximal enhancement of release by haloperidol was obtained with 30–60 pulses delivered at a rate of 3 Hz, whereas much less facilitation of release was seen at 0.3 and 1 Hz (30–90 pulses) or with 360 pulses at either of the three frequencies. Therefore, the slope of the frequency-release curve was markedly increased by haloperidol. These results indicate that activation of presynaptic DA receptors, and thus facilitation of release by haloperidol was highly dependent on the rate and duration of stimulation of striatal dopaminergic terminals. In these neurons the feedback loop seems to act physiologically to depress the slope of the frequency-release curve.  相似文献   

19.
Abstract: The existence of both nitric oxide synthase (NOS) immunoreactive interneurons and amino acid neurotransmitter-mediated nitric oxide (NO) release in the striatum suggests a role for NO in modulating striatal function. To explore the potential interaction between NO and dopaminergic neurotransmission, the NO-releasing agent (±)-S-nitroso-N-acetylpenicillamine (SNAP) was administered locally into the anterior medial striatum of chloral hydrate-anesthetized rats. SNAP, at 0.5, 1, and 2 mM concentrations, elevated striatal extracellular (EC) dopamine (DA) to 200 ± 42, 472 ± 120, and 2,084 ± 496%, respectively, above baseline levels. Perfusion with (±)-penicillamine (PEN, 1 mM), the non-NO-containing carrier component of SNAP, was ineffective, indicating that PEN is not responsible for SNAP-mediated DA release. Additional microdialysis experiments suggest SNAP-mediated DA release is not due to NO-induced neurotoxicity or blockade of the DA transporter. The DA-releasing effect of SNAP was attenuated under calcium-free conditions and abolished in rats pretreated with reserpine (5 mg/kg), implicating a calcium-sensitive vesicular-dependent release process. To determine the mechanism of SNAP-mediated DA release, the guanylyl cyclase (GC) inhibitor LY 83583 (100 µM) was administered 100 min before and during the SNAP pulse. LY 83583 elevated EC DA levels approximately fivefold and potentiated the DA-releasing effect of SNAP to 2,598 ± 551% above basal DA levels. Similar pretreatments with both the noncompetitive N-methyl-d -aspartate (NMDA) antagonist MK-801 (10 µM) and the competitive NMDA-receptor antagonist (±)-3-(carboxypiperazin-4-yl)propyl-1-phosphonic acid [(±)-CPP, 100 µM] blocked SNAP-mediated DA release. SNAP-mediated DA release was also significantly blunted by pretreatment and coperfusion with MgSO4 (10 mM) and 6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 µM) but not (+)-2-amino-3-phosphonopropionic acid (AP-3, 10 µM). These results suggest that NO releases DA via a calcium-sensitive vesicular-dependent process that is independent of GC activation. In addition, NMDA and kainate/(±)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated mechanisms are implicated in NO-induced DA release.  相似文献   

20.
Conjugated Dopamine in Superfusates of Slices of Rat Striatum   总被引:3,自引:3,他引:0  
Abstract: An acid-hydrolyzable conjugate of 3,4-dihydroxyphenylethylamine (dopamine, DA) was detected in superfusates from slices from rat striatum. The concentrations of endogenous free and conjugated DA, and of the acid metabolites (3,4-dihydroxyphenylacetic acid [DOPAC] and homovanillic acid [HVA]) in superfusates were measured using HPLC with electrochemical detection. Conjugated DA in superfusates represented 10–20% of the free DA under basal conditions and during release evoked by p -tyramine (5 × 10−6 M to 5 × 10−4 M ); much smaller amounts of conjugated DA overflowed into superfusate when DA was released by equimolar concentrations of β-phenylethyl-amine. Surprisingly, inhibition of monoamine oxidase by the inhibitors N -methyl- N -propargyl-3-(2,4-dichlorophenoxy)propylamine hydrochlo-ride (clorgyline) or N -methyl- N -2-propynylbenylamine (pargyline) had little effect on the amounts of conjugated DA present in superfusate. Under basal conditions, the amounts of conjugated DA in superfusate were always less than the amounts of DOPAC but quite similar to the amounts of HVA. However, during release of DA evoked by p -tyramine the concentrations of conjugated DA in superfusate showed much more pronounced increases than those of the acidic metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号