首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Plant leucine-rich repeats receptor-like kinases (LRR-RLKs) play key roles in plant growth, development, and responses to environmental stresses. However, the functions of LRR-RLKs in bryophytes are still not well documented. Here, a putative LRR-RLK gene, PnLRR-RLK, was cloned and characterized from the Antarctic moss Pohlia nutans. Phylogenetic analysis revealed that PnLRR-RLK protein was clustered with the Arabidopsis thaliana LRR XI family proteins. Subcellular localization analysis of PnLRR-RLK revealed that it was mainly localized on plasma membrane. The expression of PnLRR-RLK was induced by mock high salinity, cold, drought, and exogenously supplied abscisic acid (ABA) and methyl jasmonate (MeJA). Meanwhile, the overexpression of PnLRR-RLK showed an increased tolerance of transgenic Arabidopsis to salt and ABA stresses than that of the wild type (WT) plants. Furthermore, the expression levels of several salt tolerance genes (AtHKT1, AtSOS3, AtP5CS1, and AtADH1) and an ABA negatively regulating gene AtABI1 were significantly increased in transgenic plants. Meanwhile, the expression levels of ABA biosynthesis genes (AtNCED3, AtABA1, and AtAAO3) and ABA early response genes (AtMYB2, AtRD22, AtRD29A, and AtDREB2A) were decreased in transgenic Arabidopsis after salt stress treatment. Therefore, these results suggested that PnLRR-RLK might involve in regulating salt stress-related and ABA-dependent signaling pathway, thereby contribute to the salinity tolerance of the Antarctic moss P. nutans.  相似文献   

7.
8.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   

9.
10.
Phosphoprotein phosphatase 2A (PP2A) plays a crucial role in cellular processes via reversible dephosphorylation of proteins. The activity of this enzyme depends on its subunits. There is little information about mRNA expression of each subunit and the relationship between these gene expressions and the growth patterns under stress conditions and hormones. Here, mRNA expression of subunit A3 of PP2A and its relationship with growth patterns under different levels of drought stress and abscisic acid (ABA) concentration were analyzed in Arabidopsis thaliana. The mRNA expression profiles showed different levels of the up- and down-regulation of PP2AA3 in roots and shoots of A. thaliana under drought conditions and ABA treatments. The results demonstrated that the regulation of PP2AA3 expression under the mentioned conditions could indirectly modulate growth patterns such that seedlings grown under severe drought stress and those grown under 4 µM ABA had the maximum number of lateral roots and the shortest primary roots. In contrast, the minimum number of lateral roots and the longest primary roots were observed under mild drought stress and 0.5 µM ABA. Differences in PP2AA3 mRNA expression showed that mechanisms involved in the regulation of this gene under drought conditions would probably be different from those that regulate the PP2AA3 expression under ABA. Co-expression of PP2AA3 with each of PIN1-4,7 (PP2A activity targets) depends on the organ type and different levels of drought stress and ABA concentration. Furthermore, fluctuations in the PP2AA3 expression proved that this gene cannot be suitable as a reference gene although PP2AA3 is widely used as a reference gene.  相似文献   

11.
β-glucosidase (BG) was believed to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA during plant growth and development. However, there is no genetic evidence available to indicate the role of genes during fruit ripening. Here, the expression patterns of three genes (VvBG1, VvBG2, and VvBG3) encoding β-glucosidase were analyzed during grape fruit development, and it was found that β-glucosidase activity increased in grape fruit in response to various stresses. Furthermore, to verify the function of β-glucosidase during fruit ripening, heterogeneous expression of the VvBG1 gene in strawberry fruit was validated, and the results showed that the VvBG1 over-expression increased β-glucosidase and promoted the fruit ripening process in strawberry. In addition, we found that ABA contents increased in the VvBG1 over-expression of strawberry fruit, which induced fruit anthocyanin, soluble solid accumulation, and fruit softening. Moreover, genes related to coloring (CHS, CHI, F3H, and UFGT), softening (PG1, PL1, and EXP1), and aroma (SAAT, and QR) were up-regulated. This work will elucidate the specific roles of VvBGs in the synthesis of ABA and provide some new insights into the ABA-controlled grape ripening mechanism.  相似文献   

12.
13.
The dopamine (DA) content and the level of juvenile hormone (JH) degradation were studied in females of the wild-type Canton S strain and the ecdysoneless 1 (ecd 1) mutant, which does not produce ecdysone at a restrictive temperature (29°C). Exposure at the restrictive temperature considerably increased the JH-hydrolyzing activity and the DA content in five-day ecd 1 females compared with flies of both strains growing at 19°C and Canton S females exposed at 29°C. In one-day ecd 1 females, the level of JH degradation also increased at the restrictive temperature, but the DA content was low. The effect of ecdysone deficiency on the stress reaction in Drosophila melanogaster females was studied using changes in DA content and JH degradation as the reaction indicators. The ecd 1 mutation did not prevent the initiation of the stress reaction in females exposed at the restrictive temperature, but changed its intensity (stress reactivity). The interaction of 20-hydroxyecdysone with JH and DA in regulating Drosophila reproduction under normal conditions and in stress is discussed.  相似文献   

14.
15.
Photosynthetic parameters including net photosynthetic rate (PN), transpiration rate (E), water-use efficiency (WUE), and stomatal conductance (gs) were studied in indoor C3 plants Philodendron domesticum (Pd), Dracaena fragans (Df), Peperomia obtussifolia (Po), Chlorophytum comosum (Cc), and in a CAM plant, Sansevieria trifasciata (St), exposed to various low temperatures (0, 5, 10, 15, 20, and 25°C). All studied plants survived up to 0°C, but only St and Cc endured, while other plants wilted, when the temperature increased back to room temperature (25°C). The PN declined rapidly with the decrease of temperature in all studied plants. St showed the maximum PN of 11.9 μmol m?2 s?1 at 25°C followed by Cc, Po, Pd, and Df. E also followed a trend almost similar to that of PN. St showed minimum E (0.1 mmol m?2 s?1) as compared to other studied C3 plants at 25°C. The E decreased up to ≈4-fold at 5 and 0°C. Furthermore, a considerable decline in WUE was observed under cold stress in all C3 plants, while St showed maximum WUE. Similarly, the gs also declined gradually with the decrease in the temperature in all plants. Among C3 plants, Pd and Po showed the maximum gs of 0.07 mol m?2 s?1 at 25°C followed by Df and Cc. However, St showed the minimum gs that further decreased up to ~4-fold at 0°C. In addition, the content of photosynthetic pigments [chlorophyll a, b, (a+b), and carotenoids] was varying in all studied plants at 0°C. Our findings clearly indicated the best photosynthetic potential of St compared to other studied plants. This species might be recommended for improving air quality in high-altitude closed environments.  相似文献   

16.
17.
18.
Leaf rolling observed in some crops such as maize, rice, wheat and sorghum is an indicator of decreased water status. Moderate leaf rolling not tightly or early increases the photosynthesis and grain yield of crop cultivars under environmental stresses. Moreover, the effects of exogenous abscisic acid (ABA) on stomatal conductance, water status and synthesis of osmotic compounds are a well-known issue in plants subjected to water deficit. However, it is not clear how the cross-talk of ABA with H2O2 and osmolyte compounds affects the leaf rolling mechanism. Regulation mechanism of leaf rolling by ABA has been first studied in maize seedlings under drought stress induced by polyethylene glycol 6000 (PEG 6000) in this study. ABA treatment under drought stress reduced hydrogen peroxide (H2O2) content and the degree of leaf rolling (%) while the treatment-induced ABA synthesis, osmolyte levels (proline, polyamine and total soluble sugars) and some antioxidant enzyme activities in comparison to the plants that were not treated with ABA. Furthermore, exogenous ABA up-regulated the expression levels of arginine decarboxylase (ADC) and pyrroline-5-carboxylate synthase (P5CS) genes and down-regulated polyamine oxidase (PAO), diamine oxidase (DAO) and proline dehydrogenase (ProDH) gene expressions. When endogenous ABA content was decreased by the treatment of fluoridone (FLU) that is an ABA inhibitor, leaf rolling degree (%), H2O2 content and antioxidant enzyme activities increased, but osmolyte levels, ADC and P5CS gene expressions decreased. Finally, the treatment of ABA to maize seedlings exposed to drought stress resulted in the stimulation of the antioxidant system, osmotic adjustment and reduction of leaf rolling. We concluded that ABA can be a signal compound cross-talking H2O2, proline and polyamines and thus involved in the leaf rolling mechanism by providing osmotic adjustment. The results of this study can be used to provide data for the molecular breeding of maize hybrids with high grain yield by means of moderately rolled leaves.  相似文献   

19.
20.
In the present study, three Arabidopsis thaliana pop2 mutant lines with different T-DNA insertions in a gene coding γ-aminobutyric acid transaminase (GABA-TA) were screened for seed germination percentage, stress-induced oxidative damage, and GABA content and metabolism under various abiotic stresses including high temperature (42 °C), low temperature (4 °C), salinity (NaCl), and osmotic stress (mannitol). All mutant lines showed a decreased germination under all the stress treatments with a significant reduction in the pop2-1 and pop2-3 mutant lines. Content of GABA and MDA increased significantly in all pop2 mutants and wild type (WT) seedlings in response to all the treatments. However, content of GABA and MDA was lower in all pop2 mutants comparing to the WT under the same treatments. GABA increased already after 30 min and increased significantly after 2 h at 42 °C especially in the pop2-3 and WT seedlings. In response to the cold treatment, GABA content increased up to 4-fold compared to the control in all pop2 mutants and WT seedlings. In response to the NaCl treatment, GABA accumulated slightly in the WT and all pop2 mutants. On the contrary, GABA content increased significantly in the pop2, pop2-1, and pop2-3 mutants and WT under all mannitol treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号