首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stem cell fate can be induced by the grade of stiffness of the extracellular matrix, depending on the developed tissue or complex tissues. For example, a rigid extracellular matrix induces the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs), while a softer surface induces the osteogenic differentiation in dental follicle cells (DFCs). To determine whether differentiation of ectomesenchymal dental precursor cells is supported by similar grades of extracellular matrices (ECMs) stiffness, we examined the influence of the surface stiffness on the proliferation and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED). Cell proliferation of SHED was significantly decreased on cell culture surfaces with a muscle-like stiffness. A dexamethasone-based differentiation medium induced the osteogenic differentiation of SHED on substrates of varying mechanical stiffness. Here, the hardest surface improved the induction of osteogenic differentiation in comparison to that with the softest stiffness. In conclusion, our study showed that the osteogenic differentiation of ectomesenchymal dental precursor cells SHED and DFCs are not supported by similar grades of ECM stiffness.  相似文献   

2.
Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway   总被引:1,自引:0,他引:1  
The differentiation of stem cells can be directed by the grade of stiffness of the developed tissue cells. For example a rigid extracellular matrix supports the osteogenic differentiation in bone marrow derived mesenchymal stem cells (MSCs). However, less is known about the relation of extracellular matrix stiffness and cell differentiation of ectomesenchymal dental precursor cells. Our study examined for the first time the influence of the surface stiffness on the proliferation and osteogenic differentiation of human dental follicle cells (DFCs). Cell proliferation of DFCs was only slightly decreased on cell culture surfaces with a bone-like stiffness. The osteogenic differentiation in DFCs could only be initiated with a dexamethasone based differentiation medium after using varying stiffness. Here, the softest surface improved the induction of osteogenic differentiation in comparison to that with the highest stiffness. In conclusion, different to bone marrow derived MSCs, soft ECMs have a superior capacity to support the osteogenic differentiation of DFCs.  相似文献   

3.
Dental pulp stem cells constitute an attractive source of multipotent mesenchymal stem cells owing to their high proliferation rate and multilineage differentiation potential. Osteogenesis is initiated by osteoblasts, which originate from mesenchymal stem cells. These cells express specific surface antigens that disappear gradually during osteodifferentiation. In parallel, the appearance of characteristic markers, including alkaline phosphatase, collagen type I, osteocalcin and osteopontin characterize the osteoblastic phenotype of dental pulp stem cells. This review will shed the light on the osteogenic differentiation potential of dental pulp stem cells and explore the culture medium components, and markers associated with osteodifferentiation of these cells.  相似文献   

4.
Microcarriers are synthetic particles used in bioreactor-based cell manufacturing of anchorage-dependent cells to promote proliferation at efficient physical volumes, mainly by increasing the surface area-to-volume ratio. Mesenchymal stromal cells (MSCs) are adherent cells that are used for numerous clinical trials of autologous and allogeneic cell therapy, thus requiring avenues for large-scale cell production at efficiently low volumes and cost. Here, a dissolvable gelatin-based microcarrier is developed for MSC expansion. This novel microcarrier shows comparable cell attachment efficiency and proliferation rate when compared to several commercial microcarriers, but with higher harvesting yield due to the direct dissolution of microcarrier particles and thus reduced cell loss at the cell harvesting step. Furthermore, gene expression and in vitro differentiation suggest that MSCs cultured on gelatin microcarriers maintain trilineage differentiation with similar adipogenic differentiation efficiency and higher chondrogenic and osteogenic differentiation efficiency when compared to MSCs cultured on 2D planar polystyrene tissue culture flask; on the contrary, MSCs cultured on conventional microcarriers appear to be bipotent along osteochondral lineages whereby adipogenic differentiation potential is impeded. These results suggest that these gelatin microcarriers are suitable for MSC culture and expansion, and can also potentially be extended for other types of anchorage-dependent cells.  相似文献   

5.
探讨骨质疏松发病过程中T淋巴细胞对骨髓间充质干细胞(bonemarrow-derived mesenchymalstem cells,BMMSC)增殖分化的影响。选用健康雌性小鼠行双侧卵巢切除术(ovariectomy,OVX),建立绝经后骨质疏松模型。选用同一批次健康小鼠行双侧卵巢脂肪组织部分切除,建立假手术组(sham),Micro-CT确立模型成功建立。将sham组、OVX组、sham+anti—TNFα组、OVX+anti—TNFα组中T淋巴细胞与BMMSC共培养.ELISA检测sham组与OVX组T'N-巴细胞上清液中TNF-α表达的差异,MTT法检测四组共培养体系中BMMSC生长曲线:成骨诱导后碱性磷酸酶和钙化结节茜素红染色法检测BMMsc成骨能力差异:ImPcR检测小鼠BMMSC成骨相关基因Runx2、碱性磷酸酶(alkaline phosphatase,ALP)的表达。结果显示,与sham组相比,OVX组中BMMsc的增殖受到了抑制,成骨分化减弱(P〈O.05),OVXanti—TNF-α刺激组较OVX组增殖显著升高沪〈0.05),成骨分化能力显著增强(P〈0.05)。以上结果证明,在雌激素缺乏下的T淋巴细胞能影响BMMSC增殖及成骨分化能力,这可能与T淋巴细胞表达TNF-α增强相关。  相似文献   

6.
Background: Mesenchymal stem cells are able to undergo adipogenic differentiation and present a possible alternative cell source for regeneration and replacement of adipose tissue. The human infrapatellar fat pad is a promising source of mesenchymal stem cells with many source advantages over from bone marrow. It is important to determine whether a potential mesenchymal stem‐cell exhibits tri‐lineage differentiation potential and is able to maintain its proliferation potential and cell‐surface characterization on expansion in tissue culture. We have previously shown that mesenchymal stem cells derived from the fat pad can undergo chondrogenic and osteogenic differentiation, and we characterized these cells at early passage. In the study described here, proliferation potential and characterization of fat pad‐derived mesenchymal stem cells were assessed at higher passages, and cells were allowed to undergo adipogenic differentiation. Materials and methods: Infrapatellar fat pad tissue was obtained from six patients undergoing total knee replacement. Cells isolated were expanded to passage 18 and proliferation rates were measured. Passage 10 and 18 cells were characterized for cell‐surface epitopes using a range of markers. Passage 2 cells were allowed to undergo differentiation in adipogenic medium. Results: The cells maintained their population doubling rates up to passage 18. Cells at passage 10 and passage 18 had cell‐surface epitope expression similar to other mesenchymal stem cells previously described. By staining it was revealed that they highly expressed CD13, CD29, CD44, CD90 and CD105, and did not express CD34 or CD56, they were also negative for LNGFR and STRO1. 3G5 positive cells were noted in cells from both passages. These fat pad‐derived cells had adipogenic differentiation when assessed using gene expression for peroxisome proliferator‐activated receptor γ2 and lipoprotein lipase, and oil red O staining. Discussion: These results indicate that the cells maintained their proliferation rate, and continued expressing mesenchymal stem‐cell markers and pericyte marker 3G5 at late passages. These results also show that the cells were capable of adipogenic differentiation and thus could be a promising source for regeneration and replacement of adipose tissue in reconstructive surgery.  相似文献   

7.
Mouse embryonic stem cells were cultured on commercially available biodegradable macroporous microcarriers. A culture period of 1-2 weeks was needed to colonize the microcarriers. Embryonic stem cells retained their pluripotency for up to 14 days when cultured in medium supplemented with leukemia inhibitory factor. Replacing this medium by differentiation medium for 2 weeks initiated osteogenic differentiation. Encapsulation of the cell-loaded microcarriers in photopolymerizable polymers (methacrylate-endcapped poly-D,L-lactide-co-caprolactone), triacetin/hydroxyethylmethacrylate (HEMA) as solvent and with/without gelatin as porogen, resulted in a homogeneous distribution of the microcarriers in the polymer. As observed by transmission electron microscopy, viability of the cells was optimal when gelatin was omitted and when using triacetin instead of HEMA.  相似文献   

8.
Osteoblast lineage-specific differentiation of mesenchymal stem cells is a well regulated but poorly understood process. Both bone morphogenetic proteins (BMPs) and Wnt signaling are implicated in regulating osteoblast differentiation and bone formation. Here we analyzed the expression profiles of mesenchymal stem cells stimulated with Wnt3A and osteogenic BMPs, and we identified connective tissue growth factor (CTGF) as a potential target of Wnt and BMP signaling. We confirmed the microarray results, and we demonstrated that CTGF was up-regulated at the early stage of BMP-9 and Wnt3A stimulations and that Wnt3A-regulated CTGF expression was beta-catenin-dependent. RNA interference-mediated knockdown of CTGF expression significantly diminished BMP-9-induced, but not Wnt3A-induced, osteogenic differentiation, suggesting that Wnt3A may also regulate osteoblast differentiation in a CTGF-independent fashion. However, constitutive expression of CTGF was shown to inhibit both BMP-9- and Wnt3A-induced osteogenic differentiation. Exogenous expression of CTGF was shown to promote cell migration and recruitment of mesenchymal stem cells. Our findings demonstrate that CTGF is up-regulated by Wnt3A and BMP-9 at the early stage of osteogenic differentiation, which may regulate the proliferation and recruitment of osteoprogenitor cells; however, CTGF is down-regulated as the differentiation potential of committed pre-osteoblasts increases, strongly suggesting that tight regulation of CTGF expression may be essential for normal osteoblast differentiation of mesenchymal stem cells.  相似文献   

9.
We have developed microcarriers made from silk fibroin. Microcarriers can be used as a substrate for cell cultivation and cell delivery during cell-based therapy and for the construction of bioengineered tissue. Fibroin microcarriers were mineralized, which led to the appearance of calcium phosphate crystals on their surface. The ability of mineralized and nonmineralized microcarriers to support osteogenic differentiation of the osteoblast-like cell line MG-63 was estimated by alkaline phosphatase activity, an early marker of bone formation. The experiment showed cells actively proliferating on the surface of both mineralized and nonmodified microcarriers. Culturing MG-63 on the surface of fibroin microcarriers resulted in an increase of alkaline phosphatase activity indicative of osteogenic differentiation of MG-63 cells in the absence of inductors. The level of alkaline phosphatase was higher when mineralized microcarriers were used. Alkaline phosphatase activity of MG-63 cells cultivated using traditional two-dimensional approaches were close to zero. As opposed to conventional monolayer culturing, microcarrier culture cells are in a three-dimensional environment that is closer to physiological conditions. This can have a significant impact on their morphology and functional properties. During this study, we also characterized mechanical properties of porous scaffolds used for microcarriers.  相似文献   

10.
Microcarrier cultures have been shown to allow extensive cell expansion of tissue engineering relevant cells, such as chondrocytes, while maintaining their phenotype. Our aim was to investigate the in vitro three-dimensional expansion of porcine bone-marrow-derived primary mesenchymal stem cells (MSC) using commercially available Cytodex type 1, type 2, and type 3 microcarriers. In comparison, the Cytodex type 1 microcarriers showed the best results for adherence with over 80% adherent cells after 3 h of incubation, analyzed by the Poisson distribution. Different start cell densities ranging from 1 to 3 x 106 cells per 100 cm2 had only a minor influence on adhesion. The proliferation was examined on Cytodex type 1 microcarriers over a cultivation time of 28 days, which could reveal cell growth and proof of cells recolonizing freshly added microcarriers. Scanning electron microscopy displayed appropriate cell morphology and confirmed cell proliferation. After enzymatic harvest from microcarriers, the osteogenic and chondrogenic differentiation of these cells was induced and shown by relevant histochemistry, such as von Kossa and Alcian blue staining. Totaling the results, we have shown that the three-dimensional expansion of MSC on microcarriers represents a beneficial alternative to the conventional two-dimensional monolayer cultivation method.  相似文献   

11.

Background  

Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings.  相似文献   

12.
Different signaling pathways are implicated in proliferation and differentiation of stem cells. Bone Morphogenesis Pathway (BMP) signaling was known to display an important function in osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs). In the present study, the authors investigated whether blocking BMP signaling was associated with down regulation of Nestin expression as neural stem cell marker in peripheral blood derived mesenchymal stem cells (PB-MSCs). At first, MSCs were isolated from peripheral blood by plastic adherent ability and flow cytometry analysis. After reaching the confluence, the cells were treated with medium containing Noggin as antagonist of BMP signaling upon 8 days. Real time PCR analysis indicated that the expression of Nestin was diminished in PB-MSCs by attenuating BMP signaling. The obtained results suggested that BMP signaling might have a regulatory function on the Nestin expression in mesenchymal stem cells.  相似文献   

13.
14.
该文旨在比较人滑膜间充质干细胞(human synovial mesenchymal stem cells,hSMSCs)与人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,hUC-MSCs)的生物学性状.流式细胞仪鉴定hSMSCs和hUC-MSCs.比较两种间...  相似文献   

15.
To evaluate the potential of three stem cells for cell therapy and tissue engineering applications, the biological behavior and osteogenic capacity of the newly introduced cord-blood-derived, unrestricted somatic stem cells (USSC) were compared with those of mesenchymal stem cells isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). There was no significant difference between the rates of proliferation of the three stem cells. During osteogenic differentiation, alkaline phosphatase (ALP) activity peaked on day 7 in USSC compared to BM-MSC which showed the maximum value of ALP activity on day 14. However, BM-MSC had the highest ALP activity and mineralization during osteogenic induction. In addition, AT-MSC showed the lowest capacity for mineralization during differentiation and had the lowest ALP activity on days 7 and 14. Although AT-MSC expressed higher levels of collagen type I, osteonectin and BMP-2 in undifferentiated state, but these genes were expressed higher in BM-MSC during differentiation. BM-MSC also expressed higher levels of ALP, osteocalcin and Runx2 during induction. Taking together, BM-MSC showed the highest capacity for osteogenic differentiation and hold promising potential for bone tissue engineering and cell therapy applications.  相似文献   

16.
Physical stimuli play critical roles in the development, regeneration, and pathology of many mesenchymal tissues, most notably bone. While mature bone cells, such as osteoblasts and osteocytes, are clearly involved in these processes, the role of their progenitors in mechanically mediated tissue responses is unknown. In this study, we investigated the effect of cyclic substrate deformation on the proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Application of equibiaxial cyclic strain (3%, 0.25Hz) to hMSCs cultured in osteogenic media inhibited proliferation and stimulated a 2.3-fold increase in matrix mineralization over unstrained cells. The strain stimulus activated the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinase pathways, but had no effect on c-Jun N-terminal kinase phosphorylation or activity. Strain-induced mineralization was largely mediated by ERK1/2 signaling, as inhibition of ERK1/2 attenuated calcium deposition by 55%. Inhibition of the p38 pathway resulted in a more mature osteogenic phenotype, suggesting an inhibitory role for p38 signaling in the modulation of strain-induced osteogenic differentiation. These results demonstrate that mechanical signals regulate hMSC function, suggesting a critical role for physical stimulation of this specific cell population in mesenchymal tissue formation.  相似文献   

17.
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.  相似文献   

18.
19.
Bone tissue engineering(BTE) is now a promising re-search issue to improve the drawbacks from traditional bone grafting procedure such as limited donor sources and possible complications. Stem cells are one of the major factors in BTE due to the capability of self re-newal and multi-lineage differentiation. Unlike embry-onic stem cells, which are more controversial in ethical problem, adult mesenchymal stem cells are considered to be a more appropriate cell source for BTE. Bone marrow mesenchymal stem cells(BMSCs) are the ear-liest-discovered and well-known stem cell source using in BTE. However, the low stem cell yield requiring long expansion time in vitro, pain and possible morbidities during bone marrow aspiration and poor proliferation and osteogenic ability at old age impede its' clinical ap-plication. Afterwards, a new stem cell source coming from adipose tissue, so-called adipose-derived stemcells(ASCs), is found to be more suitable in clinical ap-plication because of high stem cells yield from lipoaspi-rates, faster cell proliferation and less discomfort and morbidities during harvesting procedure. However, the osteogenic capacity of ASCs is now still debated be-cause most papers described the inferior osteogenesis of ASCs than BMSCs. A better understanding of the osteogenic differences between ASCs and BMSCs is crucial for future selection of cells in clinical application for BTE. In this review, we describe the commonality and difference between BMSCs and ASCs by cell yield, cell surface markers and multiple-differentiation poten-tial. Then we compare the osteogenic capacity in vitro and bone regeneration ability in vivo between BMSCs and ASCs based on the literatures which utilized both BMSCs and ASCs simultaneously in their articles. The outcome indicated both BMSCs and ASCs exhibited the osteogenic ability to a certain extent both in-vitro and in-vivo. However, most in-vitro study papers verified the inferior osteogenesis of ASCs; conversely, in-vivo research reviews revealed more controversies in this issue. We expect the new researchers can have a quick understanding of the progress in this filed and design a more comprehensive research based on this review.  相似文献   

20.
Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号