首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Urcelay C  Acho J  Joffre R 《Mycorrhiza》2011,21(5):323-330
Here, we examined the colonization by fungal root symbionts in the cultivated Andean grain Chenopodium quinoa and in 12 species that dominate plant communities in the Bolivian Altiplano above 3,700 m elevation and explore for the possible relationships between fungal colonization and fine root proportion. The 12 most abundant species in the study area were consistently colonized by AMF and DSE. In contrast, the annual Andean grain C. quinoa showed negligible or absence of mycorrhizal fungi colonizing roots. On the other hand, C. quinoa, Junelia seriphioides and Chersodoma jodopappa were infected to a varying degree by the root pathogen Olpidium sp. We observed no relationship between AMF and DSE colonization and proportion of fine roots in the root system, but instead, the ratio between DSE and AMF colonization (ratio DSE/AMF) negatively related with proportion of fine roots. Our findings support the hypothesis regarding the importance of DSE at high altitudes and suggest a functional relationship between the rate of DSE/AMF and proportion of fine roots. The colonization by the root pathogen Olpidium sp. in C. quinoa deserves further study since this Andean grain is increasingly important for the local economy in these marginal areas.  相似文献   

2.
Arbuscular mycorrhiza and fungal root endophytes of three weeds, Galium tricornutum, Lycopsis orientalis and Scandix pecten-veneris, were studied in an altitudinal gradient of the Pamir Alai Mountains. Colonisation by arbuscular mycorrhizal fungi (AMF) was found in all species. Only in the case of G. tricornutum was there a rise in mycorrhizal parameters values found for the medium altitude range. Similar tendencies were observed in the case of the AMF colonisation potential assessment. This suggests that plant species' identity, dependency on symbiosis and interactions with soil properties determine root colonisation and the abundance of AMF in soils at the elevations in question. Four AMF species, Claroideoglomus claroideum, Funneliformis mosseae, Scutellospora dipurpurescens and Septoglomus constrictum, were isolated from trap cultures established on soil taken from under the weeds. Dark septate endophytes (DSE) accompanied the AMF in the roots of G. tricornutum and S. pecten-veneris; however, they were neither frequently occurring nor abundant. The sporangia of Olpidium spp. were observed with low frequency occurrence in G. tricornutum and S. pecten-veneris and more often in the roots of L. orientalis. However, in both cases, they were low in abundance. No differences were found for the presence of DSE and Olpidium in the altitudinal gradient.  相似文献   

3.
Although roots of species in the Pinaceae are usually colonized by ectomycorrhizal (EM) fungi, there are increasing reports of the presence of arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi in these species. The objective of this study was to determine the colonization patterns in seedlings of three Pinus (pine) species (Pinus banksiana, Pinus strobus, Pinus contorta) and Picea glauca x Picea engelmannii (hybrid spruce) grown in soil collected from a disturbed forest site. Seedlings of all three pine species and hybrid spruce became colonized by EM, AM, and DSE fungi. The dominant EM morphotype belonged to the E-strain category; limited colonization by a Tuber sp. was found on roots of Pinus strobus and an unknown morphotype (cf. SuillusRhizopogon group) with thick, cottony white mycelium was present on short roots of all species. The three fungal categories tended to occupy different niches in a single root system. No correlation was found between the percent root colonized by EM and percent colonization by either AM or DSE, although there was a positive correlation between percent root length colonized by AM and DSE. Hyphae and vesicles were the only AM intracellular structures found in roots of all species; arbuscules were not observed in any roots.  相似文献   

4.
Diverse fungal assemblages colonize the fine feeder roots of woody plants, including mycorrhizal fungi, fungal root endophytes and soil saprotrophs. The fungi co-inhabiting Cenococcum geophilum ectomycorrhizae (ECM) of Abies balsamea, Betula papyrifera and Picea glauca were studied at two boreal forest sites in Eastern Canada by direct PCR of ITS rDNA. 50 non-Cenococcum fungal sequence types were detected, including several potentially mycorrhizal species as well as fungal root endophytes. Non-melanized ascomycetes dominated, in contrast to the dark septate endophytes (DSE) reported in most culture dependent studies. The results demonstrate significant differences in root associated fungal assemblages among the host species studied. Fungal diversity was also host dependent, with P. glauca roots supporting a more diverse community than A. balsamea. Differences in root associated fungal communities may well influence ecological interactions among host plant species.  相似文献   

5.
丛枝菌根真菌与深色有隔内生真菌生态修复功能与作用   总被引:3,自引:1,他引:2  
生态修复是目前全球关注的热点问题,如何增加植被的覆盖度及生态修复效率是目前研究的重点。丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)和深色有隔内生真菌(dark septate endophyte,DSE)均是自然界植物根际分布广泛的一类内生真菌,均能与植物形成菌根共生体,具有一定的促进植物生长、抵抗逆境及修复污染土壤等功能与作用,在生态修复中具有广泛的应用潜力。本文综述了AMF及DSE两种微生物的功能、作用及其在生态修复应用中的研究进展,并进一步对AMF和DSE在生态修复中存在的问题和前景进行展望。  相似文献   

6.
In this study, the colonization of arbuscular mycorrhizas (AM) and dark septate endophytes (DSE) in 140 specimens of 32 hydrophytes collected from four lakes and four streams in southwest China were investigated. The arbuscular mycorrhizal fungi (AMF) and DSE colonization in these hydrophytes were rare. Typical AM structures were observed in one of the 25 hydrophytic species collected in lakes and six of the 17 species collected in streams. Spores of 10 identified AMF species and an unidentified Acaulospora sp. were isolated from the sediments. The identified AMF came from the four genera, Acaulospora, Gigaspora, Glomus and Scutellospora . Glomus and G. mosseae were the dominant genus and species respectively in these aquatic environments. The presence of DSE in hydrophytes was recorded for the first time. DSE occurred in one of the 25 hydrophyte species collected in lakes and three of the 17 species collected in streams. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Fuchs B  Haselwandter K 《Mycorrhiza》2004,14(4):277-281
Since information concerning the mycorrhization of endangered plants is of major importance for their potential re-establishment, we determined the mycorrhizal status of Serratula tinctoria (Asteraceae), Betonica officinalis (Lamiaceae), Drosera intermedia (Droseraceae) and Lycopodiella inundata (Lycopodiaceae), occurring at one of two wetland sites (fen meadow and peat bog), which differed in soil pH and available P levels. Root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) was quantified. Colonization by AMF appeared to be more frequent in the fen meadow than in the peat bog, and depended on the host plant. Roots of S. tinctoria and B. officinalis were well colonized by AMF in the fen meadow (35–55% root length) and both arbuscules and vesicles were observed to occur in spring as well as in autumn. In the peat bog, L. inundata showed a low level of root colonization in spring, when vesicles were found frequently but no arbuscules. In roots of D. intermedia from the peat bog, arbuscules and vesicles were observed, but AMF colonization was lower than in L. inundata. In contrast, the amount of AMF spores extracted from soil at the peat bog site was higher than from the fen meadow soil. Spore numbers did not differ between spring and autumn in the fen meadow, but they were higher in spring than in autumn in the peat bog. Acaulospora laevis or A. colossica and Glomus etunicatum were identified amongst the AMF spores extracted from soil at the two sites. S. tinctoria and B. officinalis roots were also regularly colonized by DSE (18–40% root length), while L. inundata was only rarely colonized and D. intermedia did not seem to be colonized by DSE at all.  相似文献   

8.
Establishing diverse mycorrhizal fungal communities is considered important for forest recovery, yet mycorrhizae may have complex effects on tree growth depending on the composition of fungal species present. In an effort to understand the role of mycorrhizal fungi community in forest restoration in southern Costa Rica, we sampled the arbuscular mycorrhizal fungal (AMF) community across eight sites that were planted with the same species (Inga edulis, Erythrina poeppigiana, Terminalia amazonia, and Vochysia guatemalensis) but varied twofold to fourfold in overall tree growth rates. The AMF community was measured in multiple ways: as percent colonization of host tree roots, by DNA isolation of the fungal species associated with the roots, and through spore density, volume, and identity in both the wet and dry seasons. Consistent with prior tropical restoration research, the majority of fungal species belonged to the genus Glomus and genus Acaulospora, accounting for more than half of the species and relative abundance found on trees roots and over 95% of spore density across all sites. Greater AMF diversity correlated with lower soil organic matter, carbon, and nitrogen concentrations and longer durations of prior pasture use across sites. Contrary to previous literature findings, AMF species diversity and spore densities were inversely related to tree growth, which may have arisen from trees facultatively increasing their associations with AMF in lower soil fertility sites. Changes to AMF community composition also may have led to variation in disturbance susceptibility, host tree nutrient acquisition, and tree growth. These results highlight the potential importance of fungal–tree–soil interactions in forest recovery and suggest that fungal community dynamics could have important implications for tree growth in disturbed soils.  相似文献   

9.
【背景】青枯劳尔氏菌(Ralstonia solanacearum,R.S)引发的姜瘟病是生姜产业发展的瓶颈问题。丛枝菌根真菌(arbuscular mycorrhiza fungi, AMF)与深色有隔内生真菌(dark septate endophytes,DSE)是两类重要的共生微生物。【目的】前期研究发现,AMF与DSE可提高生姜对姜瘟病的抗性,但其抗病机制尚不清楚,极大地限制了利用这两类共生真菌对该病的防治。【方法】在温室条件下做盆栽试验,以生姜组培苗为材料,设立接种AMF、DSE和不接种AMF、DSE的对照(CK)处理,并在上述处理下的植物生长4周后淋入病原菌液,病原菌接种1周后,通过测定菌根侵染率、发病率、叶绿素含量、光合指标、磷(P)含量、防御性酶活性及丙二醛(malondialdehyde, MDA)含量,研究AMF和DSE互作对病原菌侵染后生姜生长和生理生化指标的影响。【结果】AMF和DSE分别使姜瘟病发病率降低了45.27%和52.04%(P<0.05)。AMF+DSE组合处理抑病效果更好,发病率较对照降低60.87%(P<0.05)。AMF、DSE及...  相似文献   

10.
Some plants are more mycorrhizal than others and mycorrhizal colonisation of plants in extreme environments is frequently additionally reduced due to decreased spore density and/or diversity and therefore frequently overlooked. We analysed two plant species from both metal polluted and saline enriched soils with differing mycorrhizal colonisation levels/status using classical and molecular methods. The selected plant species were Sesleria caerulea (L.) Ard. and Thlaspi praecox Wulfen from a metal polluted site, and Limonium angustifolium (Tausch) Degen [Statice serotina Rchb., L. vulgare Mill. subsp. Serotinum (Rchb.) Gams] and Salicornia europaea L. from the Se?ovlje salterns in Slovenia. Despite the high mycorrhizal frequencies (F%) observed, the presence of arbuscules (A%) was at best low in S. caerulea and T. praecox, and undetectable in L. angustifolium and S. europaea. Temporal temperature gradient gel electrophoresis (TTGE) was applied to field-collected samples from both burdened environments and proved to be an effective technique for rapid profiling and identification of arbuscular mycorrhizal fungi (AMF). Sequencing and phylogenetic analysis confirmed the association of AMF of the genus Glomus with roots of all four plant species. This is the first report on the identification and profiling of Glomeromycota in the field-collected Cd/Zn metal hyperaccumulator T. praecox growing at a highly metal polluted site, as well as in L. angustifolium and S. europaea collected in a saline environment. The identification of AMF from both ecosystems only partially resembles previous identifications on the basis of spores.  相似文献   

11.
Most plant roots are associated with glomalean fungi forming arbuscular mycorrhizas (AM) and a wide range are also colonized by ascomycetous dark septate endophytes (DSE). Bromeliaceae species can be epiphytic, rupicolous or terrestrial but their mycorrhizal status is poorly studied. We examined the AM and DSE status of 5 epiphytic and 4 terrestrial Bromeliaceae from an arid area of Central Argentina. The terrestrial species were either dually associated (AM and DSE) or non-associated whereas the epiphytes were only DSE colonized. Terrestrial Bromeliaceae that formed AM-DSE associations were likely responding to the arid conditions of the area and the availability of AM fungal (AMF) spores in the soil. The terrestrialBromelia ubaniana was not colonized either by AMF or DSE. This could reflect its root morphology and high number of root hairs. DSE are endosymbiotic in the stressful ecosystems experienced by canopy epiphytes in the studied environment. The different fungal associations are discussed in relation to the three Bromeliaceae subfamiles and we suggest that environmental features determinethe type of association formed by species in this plant family.  相似文献   

12.
Arbuscular mycorrhizal fungi (AMF) have numerous effects on temperate grassland ecosystems, but prairie restorations are frequently located in sites with depauperate AMF communities. In this greenhouse study, four native species (Schizachyrium scoparium, Elymus canadensis, Monarda punctata, and Aster ericoides) and an invasive grass (Bromus inermis) were grown in unsterilized field soils and treated with two types of commercial AMF inoculum. Inocula were applied at one and two times the manufacturers' suggested rate. Soil was collected from a meadow enrolled in the Conservation Reserve Program (CRP), and from an active agricultural field. Inoculum addition had no effect on biomass or percent colonization by AMF for any grass species, regardless of soil type. Inoculum type significantly affected Aster biomass and percent colonization, although pairwise comparisons of treated individuals and controls were not significant. The overall lack of effectiveness of the commercial inocula may reflect the small number of propagules added, even when used at twice the recommended rate. Higher rates of fungal colonization in all three grasses and increased biomass in the native grasses were observed in individuals grown in the CRP soil. Plants were also colonized by dark septate endophytic fungi; for Schizachyrium, endophyte colonization was significantly greater in tilled than CRP soil. Our results indicate that an existing soil fungal community promotes colonization by AMF more than the addition of commercial inocula, and that soil characteristics associated with land use history significantly affect the growth of native species in a restoration setting.  相似文献   

13.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

14.
为利用土壤共生真菌资源促进荒漠植被恢复和生态重建, 分别于2013年6月、8月和10月, 从内蒙古元上都地区采集北沙柳(Salix psammophila)根围0-10、10-20、20-30、30-40和40-50 cm共5个土层的土壤样品, 系统研究了丛枝菌根真菌(AMF)和黑隔内生真菌(DSE)的时空分布及其与土壤因子的相关性。结果表明: AMF和DSE的平均定殖率分别为77%和84%, 说明北沙柳根系能与这两类真菌形成良好的共生关系。AMF和DSE的分布和定殖具有明显的时空异质性, 并与土壤因子密切相关。AMF和DSE的平均定殖率均表现为10月> 8月> 6月。土壤深度对AMF和DSE的定殖率有显著影响, AMF和DSE定殖率的最大值分别在0-20 cm和0-10 cm土层。双因子方差分析表明, 月份和土层对AMF和DSE的定殖率以及土壤因子具有显著的交互效应。主成分分析表明, 土壤湿度、pH值、碱性磷酸酶、易提取球囊霉素是内蒙古荒漠环境中AMF和DSE定殖的主要影响因子。  相似文献   

15.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

16.
Maize, genetically modified with the insect toxin genes of Bacillus thuringiensis (Bt), is widely cultivated, yet its impacts on soil organisms are poorly understood. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and may be uniquely sensitive to genetic changes within a plant host. In this field study, the effects of nine different lines of Bt maize and their corresponding non‐Bt parental isolines were evaluated on AMF colonization and community diversity in plant roots. Plants were harvested 60 days after sowing, and data were collected on plant growth and per cent AMF colonization of roots. AMF community composition in roots was assessed using 454 pyrosequencing of the 28S rRNA genes, and spatial variation in mycorrhizal communities within replicated experimental field plots was examined. Growth responses, per cent AMF colonization of roots and AMF community diversity in roots did not differ between Bt and non‐Bt maize, but root and shoot biomass and per cent colonization by arbuscules varied by maize cultivar. Plot identity had the most significant effect on plant growth, AMF colonization and AMF community composition in roots, indicating spatial heterogeneity in the field. Mycorrhizal fungal communities in maize roots were autocorrelated within approximately 1 m, but at greater distances, AMF community composition of roots differed between plants. Our findings indicate that spatial variation and heterogeneity in the field has a greater effect on the structure of AMF communities than host plant cultivar or modification by Bt toxin genes.  相似文献   

17.
Plants host multiple symbionts that interact with each other affecting plant performance and regulating their establishment. Here, we analyzed how the association with Epichloë endophytes affects belowground colonization by Dark Septate Endophytes (DSE) and arbuscular mycorrhizal fungi (AMF) in the grass Bromus auleticus. Epichloë-symbiotic (E+) and Epichloë-non symbiotic (E−) plants were sampled from a long-term experimental plot and colonization structures were analyzed in the roots. We also examined the influence of Epichloë exudates on the in vitro growth of DSE Microdochium bolleyi isolated from roots. Epichloë symbiosis increased AMF colonization, although differences were not significant. Despite the lack of differences in total DSE colonization, in concordance with in vitro findings, a higher significant abundance of microsclerotia was observed in E+ plants. A negative correlation between total mycorrhizal and DSE was found. Our findings show a more uniform root colonization pattern in E+ plants, suggesting a root symbiosis modulating role.  相似文献   

18.
The fungal root endophyte associations of 16 species from 12 families of plants endemic to the Pamir Alay Mountains of Central Asia are presented. The plants and soil samples were collected in Zeravshan and Hissar ranges within the central Pamir Alay mountain system. Colonization by arbuscular mycorrhizal fungi (AMF) was found in 15 plant species; in 8 species it was of the Arum type and in 4 of the Paris type, while 3 taxa revealed intermediate arbuscular mycorrhiza (AM) morphology. AMF colonization was found to be absent only in Matthiola integrifolia, the representative of the Brassicaceae family. The AM status and morphology are reported for the first time for all the species analyzed and for the genera Asyneuma, Clementsia, and Eremostachys. Mycelia of dark septate endophytes (DSE) accompanied the AMF colonization in ten plant species. The frequency of DSE occurrence in the roots was low in all the plants, with the exception of Spiraea baldschuanica. However, in the case of both low and higher occurrence, the percentage of DSE root colonization was low. Moreover, the sporangia of Olpidium spp. were sporadically found inside the root epidermal cells of three plant species. Seven AMF species (Glomeromycota) found in the trap cultures established with soils surrounding roots of the plants being studied were reported for the first time from this region of Asia. Our results provide information that might well be of use to the conservation and restoration programmes of these valuable plant species. The potential application of beneficial root-inhabiting fungi in active plant protection projects of rare, endemic and endangered plants is discussed.  相似文献   

19.
Al-Asbahi AA 《Gene》2012,494(2):209-213
Association between arbuscular mycorrhizal fungi (AMF) and majority of terrestrial plant species provides many benefits to plants that range from stress alleviation and bioremediation in soils polluted with heavy metals to plant growth promotion and yield quantity. Some non-arbuscular mycorrhizal fungi such as, Trichoderma harzianum, are known to enhance the AMF symbiosis with vascular plants. However, information about their role in AMF symbiosis is still limited. Shoots of (Avocet S) wheat seedlings were sprayed with the fungal culture filtrate and gene expression patterns were analyzed in the treated tissues. An increase in the level of mRNA of arbuscular mycorrhizal protein comparing with control was found. The over-expression of this protein in wheat tissues might contribute in initiation of AMF colonization in wheat tissues. The result of this study can spark future researches to elucidate possible role of this protein in the symbiotic interaction mechanisms between soil AMF and various plant roots.  相似文献   

20.
During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号