首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field survey, hydroponic culture, and pot experiments were carried out to examine and characterize cadmium (Cd) and zinc (Zn) uptake and accumulation by Sedum jinianum, a plant species native to China. Shoot Cd and Zn concentrations in S. jinianum growing on a lead/Zn mine area reached 103–478 and 4165–8349 mg kg?1 (DM), respectively. The shoot Cd concentration increased with the increasing Cd supply, peaking at 5083 mg kg?1 (DM) when grown in nutrient at a concentration of 100 μmol L?1 for 32 d, and decreased as the solution concentration increased from 200 to 400 μmol L?1. The shoot-to-root ratio of plant Cd concentrations was > 1 when grown in solution Cd concentrations ≤ 200 μmol L?1. Foliar, stem, and root Zn concentrations increased linearly with the increasing Zn level from 1 to 9600 μmol L?1. The Zn concentrations in various plant parts decreased in the order roots > stem > leaves, with maximum concentrations of 19.3, 33.8, and 46.1 g kg?1 (DM), respectively, when plants were grown at 9600 μmol Zn L?1 for 32 d. Shoot Cd concentrations reached 16.4 and 79.8 mg kg?1 (DM) when plants were grown in the pots of soil with Cd levels of 2.4 mg kg?1 and 9.2 mg kg?1, respectively. At soil Zn levels of 619 and 4082 mg kg?1, shoot Zn concentrations reached 1560 and 15,558 mg kg?1 (DM), respectively. The results indicate that S. jinianum is a Cd hyperaccumulator with a high capacity to accumulate Zn in the shoots.  相似文献   

2.
An efficient selection and plant regeneration protocol for Agrobacterium-mediated transformation using cotyledon explants of oriental melon (Cucumis melo L. var. makuwa) has been developed. All six oriental melon cultivars evaluated in the study showed a >90?% shoot regeneration frequency and produced 1.8?C3.6 shoots per cotyledon explant when cultured on Murashige and Skoog (MS) medium supplemented with 1.0?mg?L?1 benzyladenine and 0.01?mg?L?1 indoleacetic acid. Kanamycin (Km) and geneticin (Gt) in the shoot induction medium (SIM) were compared both qualitatively and quantitatively for their efficiency as a selection agent for the selection and regeneration of transgenic plants after Agrobacterium-mediated transformation. Shoot formation was completely inhibited at 50?mg?L?1 Km and 10?mg?L?1 Gt. Relatively high concentrations of both Gt and Km (>100?mg?L?1 Km and >25?mg?L?1 Gt) were necessary because large numbers of non-transgenic shoots survived during the selection process. The incorporation of a selectable marker (neomycin phosphotransferase II) into the genome of transgenic plants was confirmed using ??-glucuronidase (GUS), PCR and Southern blot analysis. Shoot regeneration frequencies were 41.2?% at 100?mg?L?1 Km and 15.2?% at 30?mg?L?1 Gt 8?weeks after transformation, whereas the transformation frequencies based on the PCR were 2.9 and 7.1?%, respectively, 16?weeks after transformation. These results demonstrate that a large portion of the regenerated shoots on SIM supplemented with 100?mg?L?1 Km consisted of non-transformed or escaped shoots, indicating that 30?mg?L?1 Gt is the more suitable for the selection and regeneration of transgenic plants in oriental melon.  相似文献   

3.
The aim of the study was to determine the reduction of the overall environmental load (in terms of organic and nutrient load) in effluents of a flow‐through trout farm. Effluents of a flow‐through system for rainbow trout (Oncorhynchus mykiss) production passed through constructed wetlands with free water surface. Removal of nutrients was determined in three wetlands of 350 m2 each at hydraulic residence times (HRTs) of 3.5, 5.5 and 11 h. The areal load of total suspended solids (TSS), chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) varied in terms of HRTs from 12.3–36.8 g m?2 day?1, 21.7–65.2 g m?2 day?1, 0.23–0.70 g m?2 day?1, and 1.46–4.37 g m?2 day?1. Values for reduction of suspended solids, COD, TP, and TN were 67–72%, 30–31%, 41–53% ,and 19–30%, respectively. Significantly lower nutrient concentrations in the effluent among the wetlands were only found for nitrogen parameters: TN and ammonia concentrations were lower in the wetlands with a HRT of 5.5 h (0.89 mg L?1, 0.11 mg L?1) and 11 h (0.81 mg L?1, 0.11 mg L?1) compared with the one with 3.5 h (0.96 mg L?1, 0.16 mg L?1).  相似文献   

4.
In order to evaluate the effects of immersion marking with calcein (CAL) and alizarin red S (ARS) on growth and mortality of juvenile bighead carp Aristichthys nobilis, and assess mark quality in otoliths, scales, and fin rays, CAL from 50 to 200 mg L?1 and ARS from 150 to 300 mg L?1 concentrations were used. With the exception of non‐lateral line scales from 50 mg L?1 CAL treatments, immersion for 24 h produced detectable marks in sagittae, lateral line and non‐lateral line scales, and fin rays (dorsal, pectoral, ventral, anal, and caudal) at 100 days post‐marking. Detectable fluorescent marks in sagittae were readily observed at concentrations of 150–200 mg L?1 CAL or 150–300 mg L?1 ARS. Marks were poorly visible in all non‐lateral line scales from both CAL‐ and ARS‐treated groups. Fluorescent marks were readily detected in lateral line scales at 100–200 mg L?1 CAL or 150–300 mg L?1 ARS, and in fin rays at 150–200 mg L?1 CAL or 150–300 mg L?1 ARS. In particular, optimal marks were observed at the highest concentrations investigated in sagittae (300 mg L?1 ARS), lateral line scales (150–200 mg L?1 CAL or 250–300 mg L?1 ARS), and fin rays (200 mg L?1 CAL or 250–300 mg L?1 ARS). However, fluorescent marks visible to the naked eye were not produced by any of the CAL or ARS treatments in sagittae, scales, or fin rays during this experiment. In addition, there was no significant difference on survival and growth of marked fish compared to controls throughout the experiment (P > 0.05).  相似文献   

5.
The present study was designed to analyze genetically somaclonal variants using biochemical and molecular markers. Efficient tissue culture protocol for Solanum melongena L. cv. Nirrala was developed. Maximum callus induction (100%) was observed for Murashige and Skoog (MS) media supplemented with 2.0 mg L?1 naphthalene acetic acid +0.5 mg L?1 6-benzylaminopurine; and nodal explants gave best callusing response (88.8%) as compared to internodes (88.3%) and leaves (87.7%). The best shooting was induced on nodal and internodal callus in the presence of 2.0 mg L?1 6-benzylaminopurine. Total soluble protein content of callus and regenerated variant plants was estimated for biochemical analysis, and largest amount of soluble protein was found in callus (6.54 mg g?1 fresh tissue) followed by variant plant grown on 2.0 mg L?1 6-benzylaminopurine (5.96 mg g?1 fresh tissue). Random amplification of polymorphic DNA technique was done with five decamer primers (OPC1-OPC5) and maximum polymorphism was detected by OPC 2 (26.99%) among all samples, whereas nodal callus on media containing 1.0 mg L?1 naphthalene acetic acid +1.0 mg L?1 6-benzylaminopurine showed highest polymorphism producing 22 bands, out of which 8 bands were polymorphic. The study shows that this marker system can provide better evaluation of genetic variation induced by tissue culture.  相似文献   

6.
Brief pre- and post-irrigation sprinkling treatments using freshwater were tested to determine if these practices could reduce the uptake of salts through leaves when saline water is used to sprinkler irrigate crops. Maize and barley were sprinkler irrigated 2 to 3 times per week for 30 min with saline water (4.2 dS m–1, 30 mmol L–1 NaCl and 2.8 mmoles L–1 CaCl2 for maize and 9.6 dS m–1, 47 mmoles L–1 NaCl and 23.5 mmoles L–1 CaCl2 for barley) in separate experiments with plants grown in pots outdoors. The soil surface of all pots was covered to prevent salinization of the soil by the sprinkling water. One half of the sprinkled plants was grown in nonsaline soil to study the effects of pre-wetting and post-washing when ion uptake was primarily through leaves. The other half of the sprinkled plants was grown in soil salinized by drip irrigation, in order to evaluate the effects of pre-wetting and post-washing when Na+ and Cl- uptake was through both leaves and roots.Post-washing with freshwater (5 min) reduced the leaf sap concentrations of Cl- in saline-sprinkled plants from 56 to 43 mmol L–1 in maize and from 358 to 225 mmol L–1 in barley (averages for plants grown in nonsaline and saline soil). Na+ concentrations in leaf sap were reduced from 93 to 65 mmoles L–1 (maize) and from 177 to 97 mmoles L–1 (barley) by the post-washing. Pre-wetting had a small effect on ion uptake through leaves, the only significant reduction in seasonal means being in leaf Na+ concentrations for plants grown in nonsaline soil. Pre-wetting and post-washing, when combined, reduced leaf Cl- concentrations to levels similar to those of nonsprinkled plants grown in saline soil; however, Na+ concentrations in leaves remained 3.5 times (maize) and 1.5 times (barley) higher than those of nonsprinkled plants. When pre-wetting and post-washing were not applied, sprinkled barley plants grown in saline soil had grain yields which were 58% lower than nonsprinkled plants grown in saline soil, but the reduction in grain yield was only 17% when the freshwater treatments were given. We conclude that a brief period of post-washing with freshwater is essential when saline water is employed in sprinkler irrigation. By comparison, the benefits from pre-wetting were small in these experiments. ei]T J Flowers  相似文献   

7.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

8.
This study evaluated the biological treatability of produced water (PW), the water separated from oil at the wellhead which contains both dispersed oil and low levels of heavy metals, using waste stabilisation ponds (WSPs). We examined both chemical oxygen demand (COD) and oil and grease (O&G) removal using different process configurations (hydraulic retention time (HRT), aerobic and anaerobic conditions, oil skimming, effluent recycle) in a small (10 L) reactor being fed a synthetic PW (COD = 1050–1350 mg L−1, O&G = 400–500 μL L−1, 6 gNaCl/L). The reactor was operated for 6 months, and at a HRT of 6 days (8 with evaporation) COD removals were greater than 85%, and improved over time to >90%, while O&G removals (measured with a newly developed method) were greater than 82% and also improved with time. Operating with an anaerobic section, oil skimming and 300% recycling were all found to enhance COD removal.  相似文献   

9.
Abstract Growth of barley (Hordeum vulgare L., cv. Georgie) was insensitive to soil K content above about 150 mg kg?1, but at lower levels it declined. The reduction in yield was greater in soils containing approximately 10 mg Na kg?1 than in soils with about 90 mg kg?1 of Na. Growth was unaffected by changes in shoot K concentration above 75 mol m?3, but declined at lower concentrations, and the decrease was less in plants grown in soils with high Na. Growth responses were not simply related to tissue K concentrations because plants grown in soils with extra Na had higher yields but lower K concentrations. When soil Na was low, plants accumulated Ca as tissue K declined, but when Na was provided this ion was accumulated. Plant Mg concentrations were generally low but increased as K decreased. The Ca and Mg were osmotically active. There were highly significant inverse linear relationships between yield and either the Ca or Mg concentrations in the shoots. X-ray microanalysis was used to examine the compartmentation of cations in leaves from barley plants (cv. Clipper) grown in nutrient solutions with high and low K concentrations. In plants grown with 2.5 mol m?3 K, this was the major cation in both the cytoplasm and vacuole of mesophyll cells. However, in plants grown with 0.02 mol m?3 K it declined to undetectable levels in the vacuole, although it was still detectable in the cytoplasm. In all plants, Ca was mainly located in epidermal cells. The implication of the results for explaining responses to K. in terms of compartmentation of solutes is discussed.  相似文献   

10.
Objetive: Arsenic (As) and fluoride (F) are found in groundwater and soils around the world, causing different problems to crops. Because these elements compete against phosphorus (P) in soils and plants, their relationship is complex. The aim of this work was to study the oxidative stress of soybean plants subjected to different concentrations of As and F, and the effect of P.

Methods: The following 10 treatments were carried out in each of two soils with different P content: three As levels (low 10?mg?As?kg-1, medium 50?mg?As?kg?1 and high 100?mg As kg?1), three F levels (low 160?mg?F?kg?1, medium 250?mg?F?kg?1 and high 500?mg?F?kg?1) and three As?+?F levels (same concentrations), and the control treatment (soil with the background As and F concentrations) Lipid peroxidation, chlorophyll, gluthatione contents and antioxidant enzymes activities were determination.

Results: Increased lipid peroxidation and alterations in glutathione content, catalase, superoxide dismutase and peroxidase activities as well as in chlorophyll content revealed that As causes higher oxidative stress in plants grown in soils with low P content.

Conclusion: Stress parameters in F treatments were less affected. Plants grown in soils enriched with P revealed a decrease in the toxic effects caused by As and F.  相似文献   

11.
The aim of this paper was to investigate the capacity of the aquatic macrophyte Potamogeton pusillus to remove As3+, As5+, and Hg from aqueous solutions. The plants were exposed to 0 mg.L?1, 0.1 mg.L?1, 0.5 mg.L?1, 1 mg.L?1, or 2 mg.L?1 of As3+, As5+, and Hg for 20 days. The results obtained for the individual removal of As3+, As5+, and Hg from water solutions, together with their accumulation in P. pusillus, indicate that this plant can be effectively used for the removal of Hg and of moderate concentrations of As3+ or As5+ (0.1 mg.L?1) from aquatic systems. Roots and leaves accumulated the highest amount of As when the plant was exposed to As5+, but when it was exposed to As3+, the root accumulated the highest amount of As, and the leaves, the highest amount of Hg. When compared to other aquatic plants species, the results showed that P. pusillus demonstrated a higher Hg accumulation (2465 ± 293 µg.g?1) when the transfer coefficient was 40,580 ± 3762 L.kg ?1, showing the great potential of this macrophyte for phytoremediation of water contaminated with Hg. To the extent of our knowledge, this is the first report on bioaccumulation of As3+, As5+, and Hg by P. pusillus.  相似文献   

12.
Sea bass with approximate average weights of 5 and 20 g were treated against Ceratothoa oestroides infection with: (i) medicated pellets of diflubenzuron PC90 at a dosage of 3 mg kg?1 body weight (BW) per day for 14 days. Lice were counted at the beginning of treatment and 19 days after treatment. The drug cleared all lice in the treated group; in the control group, infection remained high 30 days after beginning the experiment. It was concluded that medicated pellets containing 3 mg kg?1 BW diflubenzuron effectively cleared pre‐adult and adult stages of the isopod parasite over a 14‐day period. No adverse effects were recorded in treated sea bass during the trials and no reinfection occurred 15 days after end of the treatment. (ii) Deltamethrin by means of bath treatments in infected sea bass kept in experimental tanks at 20°C. Before treatment, toxicity on healthy fish was preliminarily assessed by testing five fish from each size group at concentrations of 30, 10, 5, 3, 1, 0.1, 0.05 and 0.01 mg L?1 for 30 min. The therapeutic concentrations tested were: 10, 5, 3, 0.15, 0.1, and 0.05 μg L?1 and assessed at 1, 24 and 48 h. Best results were achieved with the 10 μg L?1 (0.01 mg L?1) dose, where prevalence was reduced from 100 to 0% over 24 h in both large and small fish. No parasite recovery was observed at 48 h. The dose of 5 μg L?1 reduced prevalence from 100 to 11.7% and to 0% for small and large fish, respectively. Finally, with the 3 μg L?1 dose, prevalence was reduced from 100 to 37.5% (small fish) and to 13.3% (large fish). Lower doses were ineffective on the parasites at either 24 or 48 h.  相似文献   

13.
Arsenic is a critical contaminant that is released into the environment through geochemical processes and anthropic actions. Two independent hydroponic experiments were performed to evaluate the ecophysiological responses of water hyacinth [Eichhornia crassipes (Mart.) Solms] to As under various stress conditions. In experiment 1, water hyacinth was exposed to As5+ at concentrations of 0, 0.2, 2.0, and 20 mg L?1 for 0, 2, and 4 d; in experiment 2, water hyacinth was exposed at concentrations of 0, 0.025, 0.05, and 0.1 mg L?1 for 0, 10, and 20 d. In both experiments, As accumulation in plant tissue was proportional to its increase in the nutrient solution; As concentrations were higher in roots than in shoots. Detrimental effects of As on gas exchange were observed and were more pronounced in experiment 1. In experiment 1, at the beginning on the second day of exposure, significant decreases of maximum photochemical efficiency of PSII (Fv/Fm), variable chlorophyll fluorescence (Fv/F0), and photosynthetic pigment contents were observed in plants exposed to 2.0 and 20 mg(As5+) L?1. It indicated that damage to the photosynthetic apparatus had occurred. No changes in Fv/Fm, Fv/F0, and contents of photosynthetic pigments were observed in the plants grown in the presence of 0.2 mg(As5+) L?1 (in experiment 1) or after any of the treatments in experiment 2, indicating plant tolerance. Elevated nonphotochemical quenching was observed in experiment 2 after 20 d of exposure to As; it was as a part of protection mechanisms of the photosynthetic apparatus in these plants. The results obtained here indicate that the use of water hyacinth for As5+ removal from highly impacted environments is limited but that it is effective in remediating sites with a low contamination.  相似文献   

14.
A deltamethrin containing insecticide formulation (Decis®) was evaluated for its toxic potential in developing chick embryos. For the present study, three water emulsified concentrations of Decis® (12.5 mg L?1, 25 mg L?1, and 50 mg L?1) were used. Fertilized eggs of Gallus domesticus were immersed in these three concentrations of the insecticide for 60 min at 37°C on day 0 of incubation and kept for incubation till embryonic day 7. Recovered embryos were evaluated for teratogenic and biochemical changes. The results revealed that administration of Decis® at its lower concentrations (12.5 mg L?1 and 25 mg L?1) did not show any significant teratological changes but the significant number of abnormal survivors was observed at 50 mg L?1 of dose concentration when compared with vehicle-treated control. Among biochemical changes, total glycogen and RNA contents of embryos was significantly decreased at 25 mg L?1 and 50 mg L?1 of Decis® concentrations. Similarly, significant alteration (p ≤ .05) was observed in alanine transaminase activity at 50 mg L?1 concentration of Decis®. Thus, the present study concluded that the no-effect-level for developmental toxicity for Decis® is below the concentration of 25 mg L?1 under standard laboratory conditions.  相似文献   

15.
Enhancing of Phytoremediation Efficiency Using Indole-3-Acetic Acid (IAA)   总被引:2,自引:0,他引:2  
In this study, a pot experiment using Solanum nigrum L. grown in cadmium-contaminated soil was conducted in a greenhouse. Indole-3-acetic acid (IAA) was applied at three different concentrations (1 mg L?1, 10 mg L?1, and 100 mg L?1) to examine the effects on phytoremediation efficiency. According to the experimental results, IAA increased the shoot biomass of S. nigrum significantly, by 124% at the highest concentration used, and increased the Cd concentration in the shoot of S. nigrum by 16%. The Cd extraction amount from a single plant was increased by up to 158%, demonstrating potential practical application for remediation practice.  相似文献   

16.
Abstract

A simple, fast and sensitive spectrophotometric method for the simultaneous determination of Cr(III) and Cr(VI) in effluents and contaminated waters using a UV-visible spectrophotometer, which operates with an advanced software for multicomponent analysis, is proposed. The method consists in the complexation of Cr (III) with EDTA and reaction of Cr(VI) with diphenylcarbazide (DPC). Variables, such as pH and colour stability time, were studied. The effect of concomitant ions on the simultaneous Cr(III) and Cr(VI) determination was also investigated. The sums of the chromium species concentrations obtained by the proposed method were compared with the total chromium concentrations found by electrothermal atomic absorption spectrometry. Recoveries of the chromium species between 75 and 136% were obtained for spiked samples. The linear working range for Cr(III) was 0.5-30 mg L?1, while for Cr(VI) was 0.005-0.30 mg L?1. The detection limits were 0.3 mg L?1 for Cr(III) and 0.003 mg L?1 for Cr(VI) while the quantification limits were 1.0 mg L?1 for Cr(III) and 0.01 mg L?1 for Cr(VI).  相似文献   

17.
The optimal culture medium for the production of flavonoid compounds from Orostachys cartilaginea V. N. Boriss. calluses was studied. In callus cultures of O. cartilaginea, the flavonoid monomer content, in decreasing order was kaempferol-3-O-rutinoside (Kp-3-rut), quercetin 3-O-glucoside (Qc-3-glc), epicatechin gallate (Ecg), kaempferide (Ke), and quercetin (Qc). The results of the uniform design experiment indicated that the production of Qc, Ke, Qc-3-glc, Kp-3-rut, and total flavonoids were satisfactory in callus grown on full salt strength (1×) of Murashige and Skoog (MS) medium supplemented with 3.5 mg L?1 6-benzylaminopurine (BA) and 0.1 mg L?1 1-naphthalene acetic acid (NAA). By contrast, only Ecg was found in callus grown on 0.75× MS medium supplemented with 1.5 mg L?1 BA and 0.3 mg L?1 NAA. A phosphate concentration of 1.25 mM in the MS medium favored the production of Qc and Ke, whereas 0.75 mM phosphate was optimal for the production of Ecg, Qc-3-glc, Kp-3-rup, and total flavonoids. The NH4 +/NO3 ? ratios of 30/30 mM in the MS medium promoted Ke, Ecg, Qc-3-glc, Kp-3-rup, and total flavonoid production. However, a NH4 +/NO3 ? ratio of 20/40 mM enhanced Qc production. The effect of sucrose concentrations on the accumulation of different flavonoid monomers was comparatively more regular. The flavonoid content increased as the sucrose concentration increased from 20 to 40 g L?1, peaked at 40 g L?1, and decreased at concentrations greater than 40 g L?1. Therefore, 40 g L?1 sucrose was optimal for the production of the five flavonoid monomers and total flavonoids. The present findings demonstrate the possibility of producing flavonoid compounds from O. cartilaginea callus.  相似文献   

18.
The plant stress hypothesis posits that a herbivore’s reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO43?, K+, and Na+ in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L?1) resulted in increased Na+ and protein content relative to control plants, as well as reduced PO43?, K+, and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day?1 in control specimens, 0.125 day?1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L?1), and was highest (0.241 day?1) on plants grown under moderate salinity conditions (1920 mg L?1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.  相似文献   

19.
Thymus daenensis Celak. is an aromatic herb used as a popular medicine and its natural products in the form of extracts and essential oil have significant economic values in Iran. We hypothesized that spraying plants grown under deficit irrigation system with chitosan can be considered as an applicable method to enhance essential oil and antioxidant activity in thyme. Response of thyme to three irrigation regimes including well-watered, moderate stress, and severe stress along with three levels of chitosan application rates 0, 200, and 400 μL L?1 was evaluated in a 2-year study in 2014 and 2015. Drought stress condition significantly shortened phenologic stages, more specifically in the first (establishment) year. All growth parameters were reduced dramatically as drought stress intensified. Imposing even moderate stress reduced leaf area as much as 59 and 44% in the first year and the second year, respectively. Biomass yield of plants grown under severe drought stress decreased substantially, whereas essential oil content and the share of thymol in thyme oil which possesses the greatest degree of biological activity improved. Maximum oil yield (1.50 g plant?1) was obtained from plants under mild drought stress when sprayed with 400 μL L?1 chitosan in the second year when plants were well-established. Foliar applications of chitosan reduced the adverse effect of water deficit on oil yield and improved thymol content of the essential oil. Chitosan also increased secondary metabolites including α-terpinene, p-cymene, γ-terpinene, thymol, carvacrol and β-caryophyllene. Leaf flavonoid reduced under deficit irrigation while more phenol was found in plants grown under deficit irrigation. The essential oil of thyme exhibited antioxidant property when the plants were sprayed with 400 μL L?1 chitosan. The results of this study indicated that thyme can be grown successfully under moderate stress and that application of chitosan elicitor can to some degree compensate the negative impact of deficit irrigation on its biomass and essential oil yield.  相似文献   

20.
Light-emitting diodes (LEDs) are a promising technology with a potential to improve the irradiance efficiency, light quality, and the light spectrum for increasing plant yield and quality. In this experiment, we investigated the impacts of various LED light qualities, including 100% red, 100% blue, 70% red + 30% blue, and 100% white, on the growth and photosynthesis, phytochemical contents, and mineral element concentrations in lettuce (Lactuca sativa L. cv. ‘Grizzly’) in comparison to normal greenhouse conditions. Photon flux of 300 µmol m?2 s?1 was provided for 14 h by 120 LEDs set on a 60 cm × 60 cm sheet of aluminum platform in the growth chambers, where plants were grown for 60 d. Fresh mass per plant was significantly higher when grown under 100% blue and 70% red + 30% blue LEDs compared to the other environments including greenhouse conditions. Phytochemical concentrations and a nutritive value of lettuce were also significantly affected by the light treatments. Chlorophyll and carotenoid concentrations increased in the plants grown under 70% red + 30% blue LEDs compared to those grown in the greenhouse. Vitamin C content was 2.25-fold higher in the plants grown under 100% blue LEDs compared to those grown in the greenhouse. Higher photosynthesis and maximal quantum yield of PSII photochemistry were also observed in the plants treated with LED lights. The application of LED light led to the elevated concentrations of macro-and micronutrients in lettuce possibly because of the direct effect of LED light and lower stress conditions in the growth chambers compared to the greenhouse. Although the mechanism of the changes in lettuce grown under LED is not well understood, the results of this study demonstrated that LED light could be used to enhance the growth and nutritional value of lettuce in indoor plant production facilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号