首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Despite the fact that cadmium (Cd) is a non-essential element for plants, it can influence nutrients and affect human health. Potassium (K) can influence the transportation of heavy metals (HMs) in soil-plant systems. Here, a greenhouse experiment was conducted to evaluate the effect of Cd and K fertilizers on the different partitioning forms of HMs, their concentrations, uptake in the shoots and roots of Ocimum basilicum. Treatments comprised 2 levels of Cd (0 and 40?mg kg?1) and three levels of K (0, 100, and 200?mg kg?1) from three sources, i.e. KCl, K2SO4, and K-nano-chelate. 40?mg Cd kg?1 increased the shoot (above ground parts) Cd concentration. Addition of K as KCl, K2SO4, and K-nano-chelate increased the presence of Cd in shoots by 86, 82 and 76%, respectively, compared to the control. Using the nano-chelate of K can increase the accumulation of Cd in plants grown on contaminated soils to lesser content than that of the other forms of K. Application of 40?mg Cd kg?1 reduced the concentration of Zn, Cu, and Mn in the shoot, but increased shoot Fe concentration. Transfer factor (TF), which is the ratio of metal concentration in shoot to its concentration in root, of the studied HMs, was significantly affected by Cd and K treatments. Therefore, the proper form and dose of chemical fertilizers should be applied in Cd-contaminated soils.  相似文献   

2.
Abstract

Phytoremediation of heavy metal contaminated soils represents a promising technique and salt-tolerant hyperaccumulators for multiple metals are the need of time. Therefore, phytoremediation potential of four salt-tolerant grass species [Dhab (Desmostachya bipinnata), Kallar (Leptochloa fusca), Para (Brachiaria mutica) and Sporobolus (Sporobolus arabicus Boiss)] was evaluated for cadmium (Cd) and lead (Pb) in a hydroponic study. The plants were harvested after a growth period of 3 months in a nutrient solution containing different levels of Cd (0, 5, and 25?mg?L?1) and Pb (0, 25, and 125?mg L?1). Results indicated that Dhab grass showed the highest root and shoot dry matter yield followed by Para, Kallar and Sporobolus grass irrespective of metal or its level under which they were grown. All the grass species showed considerable Cd-accumulating potential with an accumulation of >150?mg kg?1of shoot dry matter at a higher level of Cd-contamination (25?mg?L?1). While in case of shoot Pb-accumulation only Para grass performed well and accumulated Pb >1000?mg kg?1 of shoot dry matter at the higher level of Pb-contamination (125?mg?L?1). Moreover, Para and Dhab grasses performed better for shoot Cd-uptake, while only Para grass showed promising shoot Pb uptake potential. In conclusion, these grass species could be penitentially used for phytoremediation of salt-affected Cd and Pb contaminated soils.  相似文献   

3.
Enhancement of Pb and Zn uptake by Indian mustard (Brassica juncea (L.) Czern.) and winter wheat (Triticum aestivumL.) grown for 50 days in pots of contaminated soil was studied with application of elemental sulphur (S) and EDTA. Sulphur was added to the soil at 5 rates (0–160 mmol kg?1) before planting, and EDTA was added in solution at 4 rates (0–8 mmol kg?1) after 40 days of plant growth. Additional pots were established with the same rates of S and EDTA but without plants to monitor soil pH and CaCl2-extractable heavy metals. The highest application rate of S acidified the soil from pH 7.1 to 6.0. Soil extractable Pb and Zn and shoot uptake of Pb and Zn increased as soil pH decreased. Both S and EDTA increased soil extractable Pb and Zn and shoot Pb and Zn uptake. EDTA was more effective than S in increasing soil extractable Pb and Zn, and the two amendments combined had a synergistic effect, raising extractable Pb to ¿1000 and Zn to ¿6 times their concentrations in unamended control soil. Wheat had higher shoot yields than Indian mustard and increasing application rates of both S and EDTA reduced the shoot dry matter yields of both plant species to as low as about half those of unamended controls. However, Indian mustard hyperaccumulated Pb in all EDTA treatments tested except the treatment with no S applied, and the maximum shoot Pb concentration was 7100 mg kg?1 under the highest application rates of S and EDTA combined. Wheat showed similar trends, but hyperaccumulation (1095 mg kg?1) occurred only at the highest rates of S and EDTA combined. Similar trends in shoot Zn were found, but with lower concentrations than Pb and far below hyperaccumulation, with maxima of 777 and 480 mg kg?1 in Indian mustard and wheat. Despite their lower yields, Indian mustard shoots extracted more Pb and Zn from the soil (up to 4.1 and 0.45 mg pot?1) than did winter wheat (up to 0.72 and 0.28 mg pot?1), indicating that the effects of S and EDTA on shoot metal concentration were more important than yield effects in determining rates of metal removal over the growth period of 50 days. Phytoextraction of Pb from this highly contaminated soil would require the growth of Indian mustard for nearly 100 years and is therefore impractical.  相似文献   

4.
Significant cadmium (Cd) contamination In soil and rice has been discovered in Mae Sot, Tak province, Thailand where the rice-based agricultural systems are established in the vicinity of a zinc mine. The prolonged consumption of Cd contaminated rice has potential risks to public health and health impacts of Cd exposed populations in Mae Sot have been demonstrated. The Thai government has prohibited rice cultivation in the area as an effort to prevent further exposure. Phytoextraction, the use of plants to remove contaminants from soil, is a potential option to manage Cd–contaminated areas. However, successful phytoextraction depends on first identifying effective hyperaccumulator plants appropriate for local climatic conditions. Five sampling sites at Padaeng Zinc mine, Tak province were selected to collect plant and soil samples. Total Cd and Zn concentrations in sediments or soils were approximately 596 and 20,673 mg kg?1 in tailing pond area, 543 and 20,272 mg kg?1 in open pit area, 894 and 31,319 mg kg?1 in stockpile area, 1,458 and 57,012 mg kg?1 in forest area and 64 and 2,733 mg kg?1 in Cd contaminated rice field. Among a total of 36 plant species from 16 families, four species (Chromolaena odoratum, Gynura pseudochina, Impatiens violaeflora and Justicia procumbens) could be considered as Cd hyperaccumulators since their shoot Cd concentrations exceeded 100 mg Cd kg?1 dry mass and they showed a translocation factor > 1. Only Justicia procumbens could be considered as a Zn hyperaccumulator (Zn concentration in its shoot more than 10,000 mg Zn kg?1 dry mass with the translocation factor > 1).  相似文献   

5.
A greenhouse experiment using 24 plastic pots filled with 6 kg of Pb- and Cd-contaminated soil was carried out. In all 24 pots, soils were heavy metal–contaminated with 10 mg Cd kg?1 soil and 500 mg of Pb kg?1 soil by using CdCl and PbNO3. Two-month-old tobacco (Nicotiana tabacum L.) plants were used to extract these heavy metals. Results showed that tobacco is able to remove Cd and Pb from contaminated soils and concentrate them in its harvestable part, that is, it could be very useful in phytoextraction of these heavy metals. Increasing additions of ammonium nitrate to soil (50, 100, and 150 mg N kg?1 soil) significantly (p ≤ .05) increased aboveground Cd and Pb accumulation during a 50-day experimental period, whereas increasing additions of urea to soil (50 and 100 mg N kg?1 soil) did not show these effects at the same significance levels. Increasing additions of ammonium nitrate to soil shows as dry matter increases, both accumulated Cd and accumulated Pb also increase when tobacco plants are growing under Pb- and Cd-contaminated soil conditions. Higher Pb concentrations depress Cd/Pb ratios for concentrations and accumulations, suggesting that Pb negatively affects Cd concentration and/or accumulation.  相似文献   

6.
Concentrations of four metals (Cu, Zn, Pb, and Cd) in the sediments of the Anzali Lagoon in the northern part of Iran were determined to evaluate the level of contamination and spatial distribution. The sediments were collected from 21 locations in the lagoon. At each lagoon site a core, 60 cm long, was taken. The ranges of the measured concentrations in the sediments are as follows: 17–140 mg kg?1 for Cu, 20–113 mg kg?1 for Zn, 1–37 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in surficial (0-20 cm) and 16–87 mg kg?1 for Cu, 28.5–118 mg kg?1 for Zn, 3–20 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in deep (40–60 cm) sediments. The results of the geoaccumulation index (Igeo) show that Cd causes moderate to heavy pollution in most of the study area. Environmental risk evaluation showed that the pollution in the Anzali Lagoon is moderate to considerable and the ranking of the contaminants followed the order: Cd > Cu > Pb > Zn. Some locations present severe pollution by metals depending on the sources, of which sewage outlets and phosphate fertilizers are the main sources of contaminants to the area.  相似文献   

7.
The effects of Ethylenediamine disuccinic acid (EDDS) (0 and 5?mmol·kg?1) as a synthetic chemical amendment, vermicompost (0 and 5%w/w) as an organic amendment and their combined application were evaluated for the phytoextraction by sunflower (Helianthus annuus L.) of cadmium (Cd) and lead (Pb) at three artificial contamination levels in soils (0, 50, and 100?mg·kg?1 for Cd and 0, 100, and 200?mg·kg?1 for Pb). The results showed that the application of EDDS was the most effective method to increase Pb and Cd concentrations in both parts of the plant. The results also showed that the application of EDDS increased 9.27% shoot Pb content at 200?mg·kg?1 but decreased 15.95% shoot Cd content at 100?mg·kg?1 contamination level with respect to the respective controls. The bioavailable concentrations of Cd at 100?mg·kg?1 and Pb at 200?mg·kg?1 contamination level in the soil at the end of experiment increased 25% and 26%, respectively after the application of EDDS but vermicompost decreased 43.28% the bioavailable Pb concentration relative to their controls. Vermicompost increased the remediation factor index of Cd, thus making it the best treatment for the phytoextraction of Cd. The combined application of EDDS and vermicompost was the best amendment for Pb phytoextraction.  相似文献   

8.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

9.
The concentrations of Pb and Cd, and trace elements (Cu and Zn) in the urban topsoil, rook (Corvus frugilegus) feces and feathers and human scalp hair were analyzed to examine the potential ecological risk posed by Pb and Cd on local residents of Qiqihar City, northeastern China. Results revealed that the Cd concentrations in the topsoil were ranged from 0.14 to 3.55 mg kg?1 dry weight (dw). The maximal geoaccumulation indices [a value from logarithmic (a measured metal content/1.5 × background content of the metal in this region), introduced by Muller] of Cd exceeded 3.5, which suggested that this region was seriously contaminated by Cd. The corresponding average detectable concentrations in C. frugilegus feathers and feces were 1.38 and 3.97 mg kg?1 dw for Pb and 1.04 and 0.69 mg kg?1 dw for Cd. High Pb and Cd concentrations, respectively, ranging from 7.46 to 24.9 mg kg?1 dw and from 0.35 to 0.92 mg kg?1 dw were also detected in the human scalp hair samples. These high Pb and Cd concentrations in C. frugilegus and local people were possibly associated with local industrial wastes and vehicle exhausts. The external tissues (feces and feather) of the rook species can be considered as an indicator of potential Cd toxic risk in this species; however, the human scalp hair is not a reliable biomarker for risk of Pb and Cd in the human being. Effective measures should be established to reduce the inputs of Pb and Cd into the urban environment and to protect the health of local people.  相似文献   

10.
Lead solubilization in soil and accumulation by spring wheat (Triticum aestivum L.) was studied in response to the ethylenediaminetetraacetic acid (EDTA) application method. In this study, 4 mmol EDTA kg?1 was applied using two application methods (a single dose and split doses) either alone or in combination with elemental sulfur. Results indicate that the application of EDTA in four equal splits at 1 mmol kg?1 during the growth period resulted in significantly higher shoot dry matter than its application at 4 mmol kg?1 at once 10 d before harvesting the wheat crop at the bolting stage. EDTA applied in split doses resulted in less lead (Pb) solubilization as compared with the single-dose application. The split application also significantly increased the shoot Pb concentration and Pb accumulation by wheat shoots as compared with the single-dose application. Despite its lesser effect on Pb solubilization, the EDTA application in split doses substantially increased Pb accumulation; thus, it is expected to minimize the risk of groundwater contamination.  相似文献   

11.
The concentrations of nine metals were measured by atomic absorption spectrophotometry in surface sediments of three coastal creeks, namely, the Ifie, Egbokodo and Ubeji creeks, in the Niger Delta of Nigeria, from August 2012 to January 2013. The aim of the study was to provide information on the spatial and seasonal distribution patterns, degree of contamination, and ecological risks of metals in these sediments. The mean concentrations of the nine metals in these creek sediments ranged from 0.30 to 3.20?mg kg?1 Cd; 10.7 to 24.7?mg kg?1 Pb, 125 to 466?mg kg?1 Cr; 3.1.10 to 14.9?mg kg?1 Cu; 4.7 to 14.3?mg kg?1 Co; 61.1 to 115?mg kg?1 Ni; 106 to 183?mg kg?1 Mn; 52.0 to 170?mg kg?1 Zn and 5 469 to 20 639?mg kg?1 Fe. In general, the metal concentrations were higher in the dry season than the wet season, except for Cr. The concentrations of Cd, Cr, Ni and Zn were above their regulatory control limits in sediment as specified by the Nigerian Regulatory Authority and Cd was identified as the main ecological risk factor. The enrichment factors for the studied metals followed the order: Cd > Cr > Ni > Zn > Pb > Co > Mn > Cu. The average multiple pollution index values indicated that these sediments were severely polluted with significant inputs from Cd, Ni and Cr.  相似文献   

12.
The objective of this study was to investigate Cd phytoremediation ability of Indian mustard, Brassica juncea. The study was conducted with 25, 50, 100, 200 and 400 mg Kg?1 CdCl2 in laboratory for 21 days and Cd concentrations in the root, shoot and leaf tissues were estimated by atomic absorption spectroscopy. The plant showed high Cd tolerance of up to 400 mg Kg?1 but there was a general trend of decline in the root and shoot length, tissue biomass, leaf chlorophyll and carotenoid contents. The tolerance index (TI) of plants were calculated taking both root and shoot lengths as variables. The maximum tolerance (TI shoot = 87.4 % and TI root = 89.6 %) to Cd toxicity was observed at 25 mg Kg?1, which progressively decreased with increase in dose. The highest shoot (10791 μg g?1 dry wt) and root (9602 μg g?1 dry wt) Cd accumulation was achieved at 200 mg kg?1 Cd treatment and the maximum leaf Cd accumulation was 10071.6 μg g?1 dry wt achieved at 100 mg Kg?1 Cd, after 21 days of treatment. The enrichment coefficient and root to shoot translocation factor were calculated, which, pointed towards the suitability of Indian mustard for removing Cd from soil.  相似文献   

13.
In this study, a comprehensive assessment of soil heavy metal (HMs) pollution in the Yellow River Delta National Nature Reserve (YRDNNR) was conducted. Spatial distributions, chemical fractions, and sources of eight HMs (Cu, Zn, Pb, Cr, Cd, Fe, Mn, and Ni) in 46 soil samples in the studied region were analyzed. In addition, the potential risks of the HMs were evaluated. The results showed that the mean concentrations of Cu, Zn, Pb, Cr, Cd, Fe, Mn, and Ni were 19.4, 65.2, 38.4, 55.9, 0.078, 41546.5, 510.3, and 27.5 mg kg?1, respectively. It indicates that the concentrations of most HMs, with exception of Pb and Fe, in samples were similar to the background value of soil in China. Principal component analysis results showed that the HMs originated mainly from natural sources, but Pb pollution in the studied area was significantly caused by anthropogenic activities. In addition, Ecological risk assessment statistical analysis indicates that the HM contamination level in YRDNNR ranged from low to moderately polluted, however, the environmental risk due to Mn and Pb contamination was high.  相似文献   

14.
《农业工程》2022,42(4):392-397
Phytoremediation is a low-cost but highly efficient and environmentally friendly technology for heavy metal soil remediation. However, its success in soils is dependent on the chosen plant and microbes. Moreover, the effect of mycorrhizal fungi and bacteria on CO2 release, mineralization rate, and metal translocation in cadmium and lead-contaminated cattails plant is unknown. The goal of the research was to look into the effects of bacteria, mycorrhiza, and cattails on CO2 release, mineralization rate, lead (Pb), and cadmium (Cd) removal from soil. The experiment used six different combinations (mycorrhiza, bacillus 10 mL, bacillus 100 mL, mycorrhiza + bacillus 10 mL, mycorrhiza + bacillus 100 mL, and control). The results showed that combining mycorrhiza with bacillus 100 mL resulted in greater increases in CO2 release, polysaccharides content and mineralization rate (2.84 mg CO2 g?1 in dry soil, 0.90 mg, 0.021 mg C g?1 dry soil day?1). More crucially, mycorrhiza + bacillus 100 mL roots had the greatest quantities of Cd and Pb (18.26 mg kg?1 and 155.22 mg kg?1), showing that bacteria had a prominent part in the phytoextraction process. Regarding Cd, the bacillus 100 mL had the highest translocation factor (TF) (3.99) and biological accumulation factor (BAF) (75.54), indicating effective translocation and excessive Cd accumulation in the plant. Bacillus 100 and mycorrhiza + bacillus 100 had the highest Pb TF (0.49) and BAF (6.08). Ultimately, the elimination of Cd and Pb was linked to the maximum bacterial cell density, mycorrhizal activity, and CO2 emission, resulting in a unique phytoremediation in Pb-Cd contaminated cattails rhizosphere soils.  相似文献   

15.
The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg?1oilcake manure + 5 mmol kg?1 EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg?1and lead accumulation up to 16.11, 13.44 and 3.17 mg kg?1, respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR = 0.676%) and Pb (RR = 0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg?1oilcake manure +2 g kg?1 humic acid]. Applied EDDS altered chlorophyll–a, chlorophyll–b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73–8.65%, 5.81–17.65%, and 7.04–17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process.  相似文献   

16.
Alfalfa was cultivated in two potted soil series obtained from two sandy soils contaminated by Cu (SM) and metal(loids)/PAH (CD). Shoot production was monitored for 8 weeks. Then, larvae of Spodoptera exigua were reared on alfalfa of both soil series for eight days. A biotest (using Phaseolus vulgaris) was used to assess the soil phytotoxicity. Increasing soil contamination reduced P. vulgaris growth, but alfalfa growth was only reduced on the SM soil series. Exposure to the SM soil was mirrored by shoot Cu and Cr concentrations of alfalfa (respectively, in mg kg ?1 DW, Cu and Cr ranged from 11.9 and 0.4 in the CTRL soil to 98.5 and 1.2 in the SM one). Exposure to the CD soil series was mirrored by shoot Zn concentrations (i.e., 48–91.6 mg kg?1 DW). Internal metal(loid) concentrations of S. exigua remained generally steady across both soil series (respectively Cd 0.05–0.16, Cr 0.5–3.3, Cu 5.8–98.5, Ni 0.6–1.6, Pb 0.4–1.3, and Zn 57–337 mg kg?1 DW), and most of the associated transfer factors were lower than 1. Here, due to the excluder phenotype of alfalfa across our TE contamination gradients, S. exigua could cope with high total metal(loid) concentration in both contaminated soils.  相似文献   

17.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

18.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

19.
Cadmium (Cd) is one of the important pollutants of soil and the genotoxicity of Cd-contaminated soil was studied in combination with imidacloprid. The single cell gel electrophoresis or comet assay was used to quantify DNA strand breaks as a measure of DNA damage induced by Cd and imidacloprid contamination in soil. The soil was artificially contaminated by Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg· kg?1 dry soil) or Cd (0.0, 0.2, 0.5, 1.0, 2.0 mg · kg?1 dry soil) and imidacloprid (0.5 mg · kg?1 dry soil). Roots ofVicia faba were exposed to the contaminated soil for 2 h at 25°C and were used in the comet assay. DNA damage was measured as the values of percentage of nuclei with tails, tail length, tail DNA, tail moment (TM), and Olive tail moment (OTM). DNA damages of root tips ofVicia faba increased after Cd treatment and there were dose-related increases in DNA damage measured as these parameters. However, the addition of imidacloprid further increased the DNA damage. These data confirmed the genotoxic effect of Cd to plants, and that the combined pollution with imidacloprid can enhance the genotoxicity of Cd.  相似文献   

20.
The objectives of the present study were to investigate the mitigation of lead (Pb), cadmium (Cd), and arsenic (As) in a multi-metal contaminated soil and their accumulation in rice plants (Oryza sativa L., cv II You 93) using a combined amendment (CMF, calcium carbonate + metakaolin + fused calcium–magnesium phosphate fertilizer). The results showed that application of CMF was effective in reducing the acid-extractable concentrations of soil Pb and Cd. The exchangeable concentrations of soil As showed an initial decrease followed by a gradual increase. The application of 0.2% CMF notably reduced the concentrations of Pb, Cd, and As in brown rice by 46.5%, 43.6%, and 32.0%, respectively. The concentration of As in brown rice was 0.179 mg kg?1 at 0.2% CMF, which met the maximum levels of contaminants in foods of China (MLs) (the ML of Pb, Cd, and As is 0.2 mg kg?1 according to the China national standard GB 2762-2012). At 1.6% CMF, the concentrations of Pb and Cd in brown rice were 0.002 and 0.185 mg kg?1, respectively, i.e., reductions of 99.6% and 74.1%, and these values also fell within the MLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号