首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Distribution of calcium-binding proteins (CaBPr) parvalbumin (PV) and calbindin (CB) in the thalamic auditory center (nucleus ovoidalis, Ov) was studied in the pigeon (Columba livia). Two parts of Ov were distinguished on the basis of their cytoarchitectonics and distribution of PV and CB immunoreactivity. The central lemniscal region (core, nCe) contains both dense PV-ir neuropil and PV-ir neurons overlapped with scant CB-ir neuropil and weaker stained CB-ir neurons. The peripheral extralemniscal region (belt), consisting of peri/paraovoidal nuclei (Ovl, Ovm, SPO), contains only CB-ir neuropil and strongly stained CB-ir neurons morphologically differing from CB-ir neurons in the nCe. A comparative analysis of our data on the distribution of PV and CB immunoreactivity in the thalamic auditory relay center in pigeons and related literature data obtained on other avian, reptilian and mammalian species indicates high evolutionary conservatism of its extralemniscal region across all sauropside amniotеs and mammals in contrast to plasticity of its central lemniscal region due to adaptive, ecologically dependent transformations during the evolution.  相似文献   

2.
Immunohistochemical distribution of calcium-binding proteins, parvalbumin (PV) and calbindin (CB), has been studied in the mesencephalic auditory center (MLd) of pigeon (Columba livia). In the central region of the MLd (core, ICC), an overlap in distribution of the PVand CB-immunopositive (ip) neurons and neuropil has been observed, with different patterns in the central and peripheral parts. In the peripheral region of the MLd (belt, ICS, and ICX), both neurons and neuropil contained only CB. A selective CB chemospecificity of the belt, ICS, and ICX is an evolutionary conserved feature characteristic of all avian species. Interspecies differences in the distribution of PV and CB immunoreactivity in the ICC are a result of adaptive functional specialization, which provides specific processing of different aspects of the auditory information.  相似文献   

3.
Distribution of activity of mitochondrial oxidative enzyme cytochrome oxidase (CO) was studied in the thalamic (Ov) and telencephalic (field L) auditory centers of the pigeon Columbia livia. Different levels of CO activity are found in the core and belt of the centers: the high CO activity in the core of Ov (nCe) and telencephalic field L2 and the much lower or absent in the peripheral regions (Ovl, Ovm, SPO and L1 and L3). Comparison of our data with those of various avian and reptile species confirms the concept of the common plan of rostral auditory centers in sauropsid amniotes by the principle of the center-periphery (core-belt), which is characteristic of the corresponding mammalian centers. The separation of the central and peripheral parts of these centers is better pronounced in birds than in reptiles.  相似文献   

4.
5.
6.
7.
Europium(III) binding to 9-kDa calbindin from pig intestines was studied by direct excitation of the 7Fo----5Do transition of the ion and by near-ultraviolet circular dichroic spectroscopy. Europium(III) binding is clearly biphasic. As with other lanthanides the C-terminal metal-binding site (site II) is filled first. The europium ion in this site gives an excitation spectrum with a single peak at 579.1 nm (peak 2). The occupation of the N-terminal site (site I) by europium gives excitation spectra that are pH-dependent and show a peak at 579.4 nm (peak 1a) at pH 5 which shifts to 578.7 nm (peak 1b) over the pH range 5-7. At pH 8.07 the fluorescence from europium in site I largely disappears because of weak binding, whereas that from site II is quenched by about 75% in spite of full occupancy of the site as shown by circular dichroic titration. There is a strong interaction between the two sites in spite of the very different affinities. The fluorescence from site II increases stoichiometrically with the addition not only of the first equivalent of europium, but also concomitantly with the fluorescence from site I upon addition of the second equivalent. Furthermore, when Eu1-calbindin is titrated with calcium the fluorescence at 579.1 nm is quenched by about 30% during the addition of one equivalent of calcium which fills site I. Subsequent titration with large excesses of calcium displaces europium from site II. The affinity of site II for europium is about 100 times that of calcium under these conditions.  相似文献   

8.
Carp parvalbumin has two calcium-binding domains with a similar three-dimensional structure. Using the tryptic hydrolysis at the arginine residue in position 75, it was possible to split off one calcium-binding domain. All lysine residues were protected by maleic groups which were removed at the final stage. The domain (with a peptide thirty-three residues) isolated by ion-exchange chromatography and gel filtration does not have a secondary structure in a solution and is unable to bind calcium.  相似文献   

9.
Using histochemical and immunohistochemical techniques, distribution of activity of oxidative mitochondrial enzyme cytochrome oxidase (CO) and calcium-binding proteins-immunoreactivity was studied in the spiral ganglion and auditory nuclei of brainstem in two turtle species. Calbindin-, parvalbumin-and calretinin-immunoreactivity in neurons and neuropil of cochlear, supraolivary complexes, the lateral lemniscal nucleus and neuropil of spiral ganglion is shown to coincide topographically with high activity of CO. Similarity of the studied metabolic and neuro-chemical characteristics of these auditory centers in reptiles, birds and mammals suggests some general principles of their organization in amniotes, despite phylogenetic differences and peculiarities of auditory system in different species.  相似文献   

10.
Using histochemical and immunohistochemical techniques, distribution of activity of oxidative mitochondrial enzyme cytochrome oxidase (CO) and of immunoreactivity to calcium-binding proteins has been studied in spiral ganglion and auditory nuclei of brainstem in two turtle species. It has been shown that immunoreactivity to calbindin, parvalbumin, and calretinin in neurons and neuropil of nuclei of cochlear and superior olivary complexes, in nucleus of lateral lemniscus, and in spiral ganglion neurons coincides topographically with the high CO activity. The similarity of the studied metabolic and neurochemical characteristics of these auditory centers in reptiles, birds, and mammals indicates the existence of some common principles of their organization in amniotes in spite of phylogenetic differences and peculiarities of specialization of the auditory system in different species.  相似文献   

11.
12.
We have studied the distribution of calcium-binding proteins in the magnocellular neurosecretory nuclei of nonapeptidergic neurosecretory nuclei of the preoptic–hypothalamic complex in a tortoise (Testudo horsfieldi) and a pond turtle (Emys orbicularis) using immunohistochemistry. We have found that different types of cells in the paraventricular and supraoptic nuclei predominantly express calbindin and, to a lesser extent, calretinin, but not parvalbumin. The selective calbindin/calretinin control of the neurohormone secretion in these hypothalamic nuclei is an evolutionary conservative feature typical of reptiles and mammals.  相似文献   

13.
The influence of hydration on the internal dynamics of a typical EF-hand calciprotein, parvalbumin, was investigated by incoherent quasi-elastic neutron scattering (IQNS) and solid-state 13C-NMR spectroscopy using the powdered protein at different hydration levels. Both approaches establish an increase in protein dynamics upon progressive hydration above a threshold that only corresponds to partial coverage of the protein surface by the water molecules. Selective motions are apparent by NMR in the 10-ns time scale at the level of the polar lysyl side chains (externally located), as well as of more internally located side chains (from Ala and Ile), whereas IQNS monitors diffusive motions of hydrogen atoms in the protein at time scales up to 20 ps. Hydration-induced dynamics at the level of the abundant lysyl residues mainly involve the ammonium extremity of the side chain, as shown by NMR. The combined results suggest that peripheral water-protein interactions influence the protein dynamics in a global manner. There is a progressive induction of mobility at increasing hydration from the periphery toward the protein interior. This study gives a microscopic view of the structural and dynamic events following the hydration of a globular protein.  相似文献   

14.
Interactions of the calcium binding proteins, like parvalbumins pI 4.2 and p15.0 and bovine and human alpha-lactalbumins, with dipalmitoylphosphatidylcholine vesicles have been studied by means of scanning microcalorimetry and intrinsic tryptophan, tyrosine and phenylalanine fluorescence. The interactions are modulated by the Ca2+ and Mg2+ binding to the proteins and induce some changes in the physical properties of both the proteins and the liposomes. The liposomes increase the thermal stability of the Mg2+-loaded and metal-free parvalbumin. Ca2+-loaded alpha-lactalbumin interacts with the liposomes in its native state, while the metal-free protein binds to the liposomes mainly in its thermally denatured state. The interactions of both proteins with the liposomes affect the phase transition from gel to liquid-crystalline state in the liposomes. The results of the microcalorimetric and spectrofluorometric studies are corroborated by the data obtained by means of gel-chromatography on Sepharose 4B.  相似文献   

15.
Yu SH  Lee JY  Jeon CJ 《Zoological science》2011,28(9):694-702
Although the dog is widely used to analyze the function of the brain, it is not known whether the distribution of calcium-binding proteins reflects a specific pattern in the visual cortex. The distribution of neurons containing calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in adult dog visual cortex were studied using immunocytochemistry. We also compared this labeling to that of gamma-aminobutyric acid (GABA). Calbindin D28K-immunoreactive (IR) neurons were predominantly located in layer II/III. Calretinin- and parvalbumin-IR neurons were located throughout the layers with the highest density in layers II/III and IV. The large majority of calbindin D28K-IR neurons were multipolar stellate cells. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. And the large majority of parvalbumin-IR neurons were multipolar stellate and round/oval cells. More than 90% of the calretinin- and parvalbumin-IR neurons were double-labeled with GABA, while approximately 66% of the calbindin D28K-IR neurons contained GABA. This study elucidates the neurochemical structure of calcium-binding proteins. These data will be informative in appreciating the functional significance of different laminar distributions of calcium-binding proteins between species and the differential vulnerability of calcium-binding proteins-containing neurons, with regard to calcium-dependent excitotoxic procedures.  相似文献   

16.
The distribution of calbindin, calretinin and parvalbumin during the development of the mouse main olfactory bulb (MOB) was studied using immunohistochemistry techniques. The results are as follows:(1) calbindin-immunoreactive profiles were mainly located in the glomerular layer, and few large calbindin-immunoreactive cells were found in the subependymal layer of postnatal day 10 (P10) to postnatal day 40 (P40) mice; (2) no calbindin was detected in the mitral cell layer at any stage; (3) calretinin-immunoreactive profiles were present in all layers of the main olfactory bulb at all stages, especially in the olfactory nerve layer, glomerular layer and granule cell layer; (4) parvalbumin-immunoreactive profiles were mainly located in the external plexiform layer (except for P10 mice); (5) weakly stained parvalbumin-immunoreactive profiles were present in the glomerular layer at all stages; and (6) no parvalbumin was detected in the mitral cell layer at any stage.  相似文献   

17.
Calcium has long been known to play a role as a key cytoplasmic second messenger, but until relatively recently its possible involvement in nuclear signal transduction and the regulation of nuclear events has not been extensively studied. Evidence revealing the presence of transmembrane nuclear Ca2+ gradients and a variety of intranuclear Ca2+ binding proteins has fueled renewed interest in this key ion and its involvement in cell-cycle timing and division, gene expression, and protein activation. This review will offer an overview of the current state of knowledge and theory regarding calcium orchestration of nuclear functions and events and discuss possible future directions in this field of study.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号