首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

2.
Abstract

Little attention has been paid to the combined use of arbuscular mycorrhizal fungus (AMF) and steel slag (SS) for ameliorating heavy metal polluted soils. A greenhouse pot experiment was conducted to study the effects of SS and AMF?Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on plant growth and Cd, Pb uptake by maize grown in soils added with 5?mg Cd kg?1 and 300?mg Pb kg?1 soil. The combined usage of AMF and SS (AMF?+?SS) promoted maize growth, and Gv?+?SS had the most obvious effect. Meanwhile, single SS addition and AMF?+?SS decreased Cd, Pb concentrations in maize, and the greater reductions were found in combined utilization, and the lowest Cd, Pb concentrations of maize appeared in Gv?+?SS. Single SS amendment and AMF?+?SS enhanced soil pH and decreased soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Pb concentrations. Furthermore, alone and combined usage of AMF and SS increased contents of soil total glomalin. Our research indicated a synergistic effect between AMF and SS on enhancing plant growth and reducing Cd, Pb accumulation in maize, and Gv?+?SS exerted the most pronounced effect. This work suggests that AMF inoculation in combination with SS addition may be a potential method for not only phytostabilization of Pb-Cd-contaminated soil but maize safety production.  相似文献   

3.
The influence of anthracene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), on chicory root colonization by Glomus intraradices and the effect of the root colonization on PAH degradation were investigated in vitro. The fungus presented a reduced development of extraradical mycelium and a decrease in sporulation, root colonization, and spore germination when exposed to anthracene. Mycorrhization improved the growth of the roots in the medium supplemented containing 140 mg l−1 anthracene, suggesting a positive contribution of G. intraradices to the PAH tolerance of roots. Anthracene disappearance from the culture medium was quantified; results suggested that nonmycorrhizal chicory roots growing in vitro were able to contribute to anthracene dissipation, and in addition, that mycorrhization significantly enhanced anthracene dissipation. These monoxenic experiments demonstrated a positive contribution of the symbiotic association to anthracene dissipation in the absence of other microorganisms. In addition to anthracene dissipation, intracellular accumulation of anthracene was detected in lipid bodies of plant cells and fungal hyphae, indicating intracellular storage capacity of the pollutant by the roots and the mycorrhizal fungus.  相似文献   

4.
Most terrestrial plant species form associations with arbuscular mycorrhizal fungi (AMF) that transfer soil P to the plant via their external hyphae. The distribution of nutrients in soils is typically patchy (heterogeneous) but little is known about the ability of AMF to exploit P patches in soil. This was studied by growing symbioses of Linum usitatissimum and three AMF (Glomus intraradices, G. mosseae and Gigaspora margarita) in pots with two side-arms, which were accessible to hyphae, but not to roots. Soil in one side-arm was either unamended (P0) or enriched with P; simultaneous labelling of this soil with 32P revealed that G. intraradices responded to P enrichment both in terms of hyphal proliferation and P uptake, whereas the other AMF did not. Labelling with 33P of P0 soil in the other side arm revealed that the increased P uptake by G. intraradices from the P-enriched patch was paralleled by decreased P uptake by other parts of the mycelium. This is the first demonstration of variation in growth and nutrient uptake by an AMF as influenced by a localized P enrichment of the soil. The results are discussed in the context of functional diversity of AMF.  相似文献   

5.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

6.
Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85–87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81–85 and 72–75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.  相似文献   

7.
The impact of arbuscular mycorrhizal fungi (AMF) on plant ecosystems has been intensively reported. In this research, we explored the difference between native and introduced AMF in promoting the growth of dominant and subordinate plant species. In glasshouse experiments, dominants and subordinates from subtropical grasslands were colonized by native AMF or introduced AMF, Glomus versiforme. The biomass revealed that mycorrhizal dependencies (MD) on the native AMF of the dominants were much higher than those of the subordinates, while MD on the introduced AMF changed following the replacement of native AMF with introduced AMF. A close relationship between biomass promotion and increase in phosphorus uptake was observed, indicating the important role of AMF-enhanced nutrient acquisition by roots. Our results show that plant community structures are partly determined by MD on native AMF, and could be modified by introducing exogenous AMF species.  相似文献   

8.
为了解2种丛枝菌根真菌(AMF)摩西管柄囊霉(Funneliformis mosseae, FM)和地表球囊霉(Glomus versiforme, GV)对入侵植物南美蟛蜞菊(Wedelia trilobata)的生长和对难溶性磷酸盐利用的影响,采用沙培盆栽方式,研究了南美蟛蜞菊在接种AMF与添加难溶性磷酸盐的生长和磷含量的变化。结果表明,在磷限制环境下FM对南美蟛蜞菊的侵染率达55%~69%,GV的侵染率达到63%~80%。添加难溶性磷酸盐后,2种AMF均促进了南美蟛蜞菊茎的伸长(FM:+46%; GV:+65%)、总生物量的增加(FM:+27.2%; GV:+40%)和磷含量的增加(FM:+36.6%; GV:+40.7%)。对比FM,GV对植物利用难溶性磷有更显著的促进作用。因此,南美蟛蜞菊与2种AMF形成的共生体系可以促进植物生长和对营养资源的利用,提高对难溶性磷的吸收效率可能使得南美蟛蜞菊在营养贫乏的环境中更好地建立种群。  相似文献   

9.
The effects of mycorrhizae on growth and uptake of N, P, Zn, and Pb by plants were investigated in a greenhouse trial using vetiver grass (Vetiveria zizanioides) as host. Inoculation of the host plants with arbuscular mycorrhizal fungi (AMF), Glomus mosseae and G. intraradices spores, significantly increased the growth and P uptake. Mycorrhizal colonization increased Pb and Zn uptake by plants under low soil metal concentrations (at 0 and 10 mg/kg of Pb or Zn), whereas under higher concentrations (at 100 and 1,000 mg/kg of Pb or Zn), it decreased Pb and Zn uptake. P concentration in soil was negatively correlated with mycorrhizal colonization as well as Zn or Pb concentrations. The results showed that inoculation of the host plants with AMF protects them from the potential toxicity caused by increased uptake of Pb and Zn, but the degree of protection varied according to the fungus and host plant combination. The potential of arbuscular mycorrhizae in phytoremediation of the Zn‐ or the Pb‐contaminated soils is discussed in this article.  相似文献   

10.
The effect of root-organ culture (ROC) produced arbuscular mycorrhizal fungi (AMF), i.e. Glomus proliferum, Glomus versiforme and Glomus intraradices, entrapped in Ca-alginate beads on the first stages development of micropropagated bananas (Musa spp. cv. Grande Naine) was investigated. The experimental design consisted of banana plants inoculated with one of the three AMF and two controls, i.e. Control-AL (with empty alginate beads), and Control (no beads). Forty plants were considered per treatment and cultured under greenhouse conditions in a completely randomized design. Eight plants per treatment were harvested 40, 80, 120, 160 and 200 days after inoculation and analysed for root colonization, growth parameters and nutrient concentration. In addition, spores were enumerated in the substrate at the same intervals. Ca-alginate entrapped ROC-produced AMF spores were able (1) to colonize the root system of a micropropagated banana cultivar under nursery conditions, (2) to increase plant P nutrition and biomass, and (3) to proliferate in the commercial nursery substrate, therefore increasing the fungal inoculum biomass. The entrapment of ROC-propagated spores, adaptable to a wide range of Glomeromycetes, represents thus a forthcoming alternative pathogen-free inoculum.  相似文献   

11.
Phytoremediation is the use of selected plants to decontaminate polluted environments. Arbuscular mycorrhizal fungi (AMF) may potentially be useful for phytoremediation, but it is not known how petroleum hydrocarbons influence AMF spore germination and hyphal growth. To address this question, germination of spores and germ tube growth of Glomus intraradices Schenck and Smith and Glomus aggregatum Schenck and Smith were assessed in soil contaminated with up to 3% (w/v) of F2 diesel oil or HAGO reference oil. Hyphal growth, colonization and progeny spore production were assessed in vitro using transformed root cultures of Daucus carota and G. intraradices spores in a F2 diesel contaminated medium. In addition, extraradical hyphal growth of G. intraradices colonizing Daucus carota in the presence of F2 diesel was studied. Neither F2 diesel nor HAGO reference oil affected spore germination or germ tube growth in soil. However, in the presence of plant roots, germ tube growth of G. intraradices was reduced and delayed in the presence of F2 diesel and root colonization was not detected. Hyphal growth of pre-colonized carrot roots by G. intraradices was reduced and delayed in F2 contaminated medium compared to controls. F2 diesel did not inhibit spore germination of these AMF species but did reduce colonization, germ tube and hyphal growth. These results suggest that AMF inoculum can be established in petroleum-contaminated sites. However, it may prove beneficial to plant pre-colonized plants to increase the probability of sufficient AMF colonization and growth. The likely mechanism(s) of petroleum toxicity in this plant-microbe system was discussed.  相似文献   

12.
Elemental composition of arbuscular mycorrhizal fungi at high salinity   总被引:1,自引:0,他引:1  
We investigated the elemental composition of spores and hyphae of arbuscular mycorrhizal fungi (AMF) collected from two saline sites at the desert border in Tunisia, and of Glomus intraradices grown in vitro with or without addition of NaCl to the medium, by proton-induced X-ray emission. We compared the elemental composition of the field AMF to those of the soil and the associated plants. The spores and hyphae from the saline soils showed strongly elevated levels of Ca, Cl, Mg, Fe, Si, and K compared to their growth environment. In contrast, the spores of both the field-derived AMF and the in vitro grown G. intraradices contained lower or not elevated Na levels compared to their growth environment. This resulted in higher K:Na and Ca:Na ratios in spores than in soil, but lower than in the associated plants for the field AMF. The K:Na and Ca:Na ratios of G. intraradices grown in monoxenic cultures were also in the same range as those of the field AMF and did not change even when those ratios in the growth medium were lowered several orders of magnitude by adding NaCl. These results indicate that AMF can selectively take up elements such as K and Ca, which act as osmotic equivalents while they avoid uptake of toxic Na. This could make them important in the alleviation of salinity stress in their plant hosts.  相似文献   

13.
Diversity in phosphorus (P) acquisition strategies was assessed among eight isolates of arbuscular mycorrhizal fungi (AMF) belonging to three Glomus species, all obtained from the same field site. Maize (Zea mays L. cv. Corso) was used as a test plant. Compartmented cultivation containers coupled with 33P radioisotope labeling of soil P were employed to estimate (1) the distance from the roots that AMF were able to acquire soil P from, (2) the rate of soil colonization, (3) the efficiency of uptake of soil P by AMF, (4) benefits provided to maize in terms of P acquisition and growth. Glomus mosseae and G. intraradices took up P 10 cm from roots, whereas G. claroideum only up to 6 cm from the roots. G. mosseae most rapidly colonized the available soil volume and transported significant amounts of P to maize from a distance, but provided no net P uptake benefit to the plants. On the other hand, both G. intraradices and three out of four G. claroideum isolates significantly improved net P uptake by maize. These effects seem to be related to variability between and to a limited extent also within AMF species, in mycelium development, efficiency of hyphal P uptake and effects on plant P acquisition via the root pathway. In spite of absence of maize growth responses to inoculation with any of the AMF isolates, this study indicates remarkable functional diversity in the underground component of the studied field site.  相似文献   

14.
Zn uptake by maize plants may be affected by the presence of arbuscular mycorrhizal fungi (AMF). Collembola often play an important controlling role in the inter-relationship between AMF and host plants. The objective of this experiment was to examine whether the presence of Collembola at different densities (0.4 and 1 individuals g−1 dry soil) and their activity have any effect on Zn uptake by maize through the plant–AMF system. The presence of the AMF (Glomus intraradices) and of the Collembola species Folsomia candida was studied in a laboratory microcosm experiment, applying a Zn exposure level of 250 mg kg−1 dry soil. Biomass and water content of the plants were no different when only AMF or when both AMF and Collembola were present. In the presence of AMF the Zn content of the plant shoots and roots was significantly higher than without AMF. This effect was reduced by Collembola at both low and high density. High densities of Collembola reduced the extent of AMF colonization of the plant roots and hyphal length in the soil, but low densities had no effect on either. The results of this experiment reveal that the F. candidaG. intraradices interaction affects Zn uptake by maize, but the mechanisms are still unknown.  相似文献   

15.
Versaw  Wayne K.  Chiou  Tzyy-Jen  Harrison  Maria J. 《Plant and Soil》2002,244(1-2):239-245
Most vascular plants acquire phosphate from their environment either directly, via the roots, or indirectly, via a symbiotic interaction with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the plant roots where the fungi colonize the cortex of the root to obtain carbon from the plant host, while assisting the plant with acquisition of phosphate and other mineral nutrients from the soil solution. As a first step toward understanding the molecular basis of the symbiosis and phosphate utilization, we have cloned and characterized phosphate transporter genes from the AM fungi Glomus versiforme and Glomus intraradices, and from the roots of a host plant, Medicago truncatula. Expression analyses and localization studies indicate that each of these transporters has a role in phosphate uptake from the soil solution.  相似文献   

16.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

17.
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on plant growth and drought tolerance in seedlings of a promising oilseed crop, Sacha Inchi (Plukenetia volubilis L.), under well-watered or drought conditions. AMF inoculation was applied in four treatments: without AMF inoculation, Glomus versiforme, Paraglomus occultum, or combination of both microorganism inoculations. The results showed that AMF colonization significantly enhanced the growth of Sacha Inchi seedlings regardless of soil water conditions, and the greatest development was reached in plants dually inoculated under well-watered conditions. G. versiforme was more efficient than P. occultum. Plants inoculated with both symbionts had significantly greater specific leaf area, leaf area ratio and root volume when compared with the uninoculated control, G. versiforme, and P. occultum treatments alone, indicating a synergistic effect in the two AMF inoculation. Photosynthetic rate and water-use efficiency were stimulated by AMF, but not stomatal conductance. Inoculation with AM fungus increased antioxidant enzymes activities including guaiacol peroxidase and catalase, thus lowering hydrogen peroxide accumulation and oxidative damage, especially under drought stress conditions. However, proline content showed little change during drought stress and AMF colonization conditions, which suggested that proline accumulation might not serve as the main compound for osmotic adjustment of the studied species. These results indicate that AMF inoculation stimulated growth and enhanced drought tolerance of Sacha Inchi seedlings, through alterations in morphological, physiological and biochemical traits. This microbial symbiosis might be an effective cultivation practice in improving the performance and development for Sacha Inchi plants.  相似文献   

18.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

19.
A pot experiment was carried out in a growth chamber to investigate P efficiencies and mycorrhizal responsiveness of modern (Krichauff and Excalibur) and old (Khapstein, Bobin, Comeback and Purple Straw) wheat cultivars (Triticum aestivum). The arbuscular mycorrhizal fungus (AMF) used in this study was Glomus intraradices. The growth medium was a soil/sand mixture with NaHCO3-extractable P of 9.4 mg P kg–1 and no extra P was added. Plant P efficiencies (uptake, utilisation and agronomic) were found to differ significantly between cultivars, but no general trends of changes with the year of release of the cultivar were found. AMF colonisation was found to decrease plant growth under our experimental conditions with low light intensity. Mycorrhizal responsiveness (MR) was measured in terms of the improvement in plant P nutrition (shoot P concentrations). MR was found to be generally lower in modern cultivars than in old cultivars, indicating that modern breeding programs may have reduced the responsiveness of modern wheat cultivars to arbuscular mycorrhizal fungi. MR was also found to decrease in general with increased plant P utilisation efficiency.  相似文献   

20.
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号