首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with sigma-1 receptor antagonist haloperidol leads to a significant inhibition of the store-dependent Ca2+ entry induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid in rat peritoneal macrophages. The results suggest the involvement of the sigma-1 receptor in the regulation of storedependent Ca2+ entry in macrophages.  相似文献   

2.
Using Fura-2AM microfluorimetry, we have shown for the first time that sigma-1 receptor agonist, tricyclic antidepressant amitriptyline, significantly inhibits glutoxim- and molixan-induced Ca2+-responses in rat peritoneal macrophages. The results suggest possible involvement of sigma-1 receptors in the signaling cascade induced by glutoxim or molixan and leading to intracellular Ca2+ concentration increase in macrophages.  相似文献   

3.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with the calsequestrin inhibitor neuroleptic trifluoperazine leads to a significant inhibition of the store-dependent Ca2+ entry induced by endoplasmic Ca2+-ATPase inhibitors thapsigargin or cyclopiazonic acid in rat peritoneal macrophages. The results suggest calsequestrin involvement in the regulation of the store-dependent Ca2+ entry in macrophages.  相似文献   

4.
The influence of the neuroleptic trifluoperazine on the intracellular concentration of Ca2+ in macrophages of rats was studied using a Fura-2AM fluorescent Ca2+ probe. It was found that trifluoperazine causes a dose-dependent increase in the intracellular Ca2+ concentration associated with Ca2+ mobilization from intracellular Ca2+ stores and subsequent entry of Ca2+ into peritoneal macrophages of rats. It was also shown that inhibitors of phospholipase A2 (4-bromophenacyl bromide, prednisolone, and dexamethasone), cyclooxygenases (aspirin and indomethacin), and lipoxygenases (caffeic acid, zileuton, and baicalein) suppress Ca2+ responses induced by trifluoperazine in macrophages. The data obtained indicate the participation of enzymes and/or products of the cascade of arachidonic acid metabolism in the influence of trifluoperazine on the intracellular concentration of Ca2+ in peritoneal macrophages.  相似文献   

5.
Using Fura-2AM microfluorimetry, the effect of oxidized glutathione (GSSG) and its pharmacological analogue glutoxim on the intracellular Ca2+ concentration in rat peritoneal macrophages was investigated. It was shown that GSSG or glutoxim increase the intracellular Ca2+ concentration by inducing Ca2+ mobilization from thapsigargin-sensitive Ca2+ stores and subsequent Ca2+ entry from external medium. Dithiothreitol, which reduces S-S-bonds in proteins, completely prevents or reverses the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim. This suggests that the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim can be mediated by their interactions with functionally important SH-groups of proteins involved in Ca2+-signaling.Two structurally different tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate prevent or completely reverse the increase in the intracellular Ca2+ concentration induced by GSSG or glutoxim. On the contrary, tyrosine phosphatase inhibitor Na orthovanadate enhances the increase of intracellular Ca2+ concentration evoked by oxidizing agents. The data suggest that tyrosine kinases and tyrosine phosphatases are involved in the regulatory effect of GSSG and glutoxim on the intracellular Ca2+ concentration in macrophages.  相似文献   

6.
Using Fura-2AM microfluorimetry, we have shown for the first time that preincubation of macrophages with methyl-β-cyclodextrin, inducing cholesterol extraction from membranes and raft disruption, leads to significant inhibition of thapsigargin-induced store-dependent Ca2+ entry in rat peritoneal macrophages. In contrast, macrophage treatment with methyl-β-cyclodextrin after Ca2+ entry mechanisms were activated by store depletion by thapsigargin application leads to potentiation of subsequent store-dependent Ca2+ entry. The results suggest that intact lipid rafts are necessary for the activation but not the maintenance of store-dependent Ca2+ entry in macrophages.  相似文献   

7.
Using Fura-2AM microfluorimetry, it was shown for the first time that neuroleptic chlorpromazine causes intracellular Ca2+ concentration increase in macrophages due to Ca2+ mobilization from intracellular Ca2+ stores and subsequent Ca2+ entry from the external medium. Chlorpromazine-induced Ca2+ entry is inhibited by La3+ and 2-aminoethoxydiphenyl borate and is associated with Ca2+ store depletion.  相似文献   

8.
Using Fura-2AM microfluorimetry, it was shown for the first time that phospholipase A2 inhibitors 4-bromophenacyl bromide and glucocorticosteroids prednisolone and dexamethasone attenuate Ca2+ responses induced by neuroleptic trifluoperazine in macrophages. The results suggest the involvement of phospholipase A2 and arachidonic acid metabolism cascade in the effect of trifluoperazine on intracellular Ca2+ concentration in macrophages.  相似文献   

9.
Ryanodine receptors (RyRs) are the Ca2+ release channels in the sarcoplasmic reticulum in striated muscle which play an important role in excitation-contraction coupling and cardiac pacemaking. Single channel recordings have revealed a wealth of information about ligand regulation of RyRs from mammalian skeletal and cardiac muscle (RyR1 and RyR2, respectively). RyR subunit has a Ca2+ activation site located in the luminal and cytoplasmic domains of the RyR. These sites synergistically feed into a common gating mechanism for channel activation by luminal and cytoplasmic Ca2+. RyRs also possess two inhibitory sites in their cytoplasmic domains with Ca2+ affinities of the order of 1 μM and 1 mM. Magnesium competes with Ca2+ at these sites to inhibit RyRs and this plays an important role in modulating their Ca2+-dependent activity in muscle. This review focuses on how these sites lead to RyR modulation by Ca2+ and Mg2+ and how these mechanisms control Ca2+ release in excitation-contraction coupling and cardiac pacemaking.  相似文献   

10.
Two new bismacrocyclic Gd3+ chelates containing a specific Ca2+ binding site were synthesized as potential MRI contrast agents for the detection of Ca2+ concentration changes at the millimolar level in the extracellular space. In the ligands, the Ca2+-sensitive BAPTA-bisamide central part is separated from the DO3A macrocycles either by an ethylene (L1) or by a propylene (L2) unit [H4BAPTA is 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; H3DO3A is 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid]. The sensitivity of the Gd3+ complexes towards Ca2+ and Mg2+ was studied by 1H relaxometric titrations. A maximum relaxivity increase of 15 and 10% was observed upon Ca2+ binding to Gd2L1 and Gd2L2, respectively, with a distinct selectivity of Gd2L1 towards Ca2+ compared with Mg2+. For Ca2+ binding, association constants of log K = 1.9 (Gd2L1) and log K = 2.7 (Gd2L2) were determined by relaxometry. Luminescence lifetime measurements and UV–vis spectrophotometry on the corresponding Eu3+ analogues proved that the complexes exist in the form of monohydrated and nonhydrated species; Ca2+ binding in the central part of the ligand induces the formation of the monohydrated state. The increasing hydration number accounts for the relaxivity increase observed on Ca2+ addition. A 1H nuclear magnetic relaxation dispersion and 17O NMR study on Gd2L1 in the absence and in the presence of Ca2+ was performed to assess the microscopic parameters influencing relaxivity. On Ca2+ binding, the water exchange is slightly accelerated, which is likely related to the increased steric demand of the central part leading to a destabilization of the Ln–water binding interaction. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Using Fura-2AM microfluorimetry, we have shown for the first time that 5-lipoxygenase specific inhibitor antiasthmatic agent zileuton significantly inhibits Ca2+-responses induced by glutoxim and molixan in macrophages. The results support 5-lipoxygenase involvement in the effect of glutoxim and molixan on intracellular Ca2+ concentration in macrophages and indicate the inadvisability of a combined use of drugs glutoxim and molixan and antiasthmatic agent zileuton.  相似文献   

12.
Intracellular Ca2+ is vital for cell physiology. Disruption of Ca2+ homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca2+ dynamics, various Ca2+ transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca2+ transport mechanisms in responding to physiological Ca2+ pulses in cytosol is to take up Ca2+ for regulating energy production and shaping the amplitude and duration of Ca2+ transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca2+ approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca2+ transport across the inner mitochondrial membrane. The mitochondrial Ca2+ uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca2+ uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca2+ influx. Since multiple Ca2+ influx mechanisms (e.g. L-, T-, and N-type Ca2+ channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca2+ signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca2+ influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca2+/H+ exchanger), and MCU and its Ca2+ sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca2+ influx pathways and their differences in kinetics, Ca2+ dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.  相似文献   

13.
The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.  相似文献   

14.
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+] i response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+] i responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells. M.-L. Chen and Y.-C. Chen contributed equally to this study  相似文献   

15.

Background

In many vascular smooth muscle cells (SMCs), ryanodine receptor-mediated Ca2+ sparks activate large-conductance Ca2+-activated K+ (BK) channels leading to lowered SMC [Ca2+]i and vasodilation. Here we investigated whether Ca2+ sparks regulate SMC global [Ca2+]i and diameter in the spiral modiolar artery (SMA) by activating BK channels.

Methods

SMAs were isolated from adult female gerbils, loaded with the Ca2+-sensitive flourescent dye fluo-4 and pressurized using a concentric double-pipette system. Ca2+ signals and vascular diameter changes were recorded using a laser-scanning confocal imaging system. Effects of various pharmacological agents on Ca2+ signals and vascular diameter were analyzed.

Results

Ca2+ sparks and waves were observed in pressurized SMAs. Inhibition of Ca2+ sparks with ryanodine increased global Ca2+ and constricted SMA at 40 cmH2O but inhibition of Ca2+ sparks with tetracaine or inhibition of BK channels with iberiotoxin at 40 cmH2O did not produce a similar effect. The ryanodine-induced vasoconstriction observed at 40 cmH2O was abolished at 60 cmH2O, consistent with a greater Ca2+-sensitivity of constriction at 40 cmH2O than at 60 cmH2O. When the Ca2+-sensitivity of the SMA was increased by prior application of 1 nM endothelin-1, ryanodine induced a robust vasoconstriction at 60 cmH2O.

Conclusions

The results suggest that Ca2+ sparks, while present, do not regulate vascular diameter in the SMA by activating BK channels and that the regulation of vascular diameter in the SMA is determined by the Ca2+-sensitivity of constriction.
  相似文献   

16.
Summary Neuropeptide tachykinins, present within sensory nerves, have been implicated as neurotransmitters involved in nonadrenergic and noncholinergic airway muscle contraction. The signal transduction pathways of tachykinins on muscle contraction and Ca2+ mobilization were investigated in swine trachea. Tachykinins, substance P (SP) and neurokinin A (NKA), concentration (1 nM to 1 μM)-dependently induced contractile responses with removal of epithelium, whereas neurokinin B (NKB) did not alter the muscle tension. The SP- and NKA-evoked muscle contractions were inhibited by NK1-R antagonist L732138, but not by either NK2-R antagonist MDL29913 or NK3-R antagonist SB218795. Consistently, SP-elicited increase in [Ca2+]i was abolished by NK1-R antagonist, neither by NK2-R nor NK3-R antagonists. The SP-induced muscular responses were significantly inhibited by L-type Ca2+ channel blocker verapamil and withdrawal of external Ca2+. Caffeine (10 mM) or ryanodine (50 μM) also partly suppressed the SP-induced muscle responses. Inhibition of inositol 1,4,5-trisphosphate (InsP3) receptor with 2-APB (75 μM) potently attenuated SP-evoked Ca2+ mobilization and muscle contraction, which was further inhibited by 2-APB under Ca2+-free external solution, but not completely. Unexpectedly, simultaneous blockade of InsP3 receptor and ryanodine receptor (RyR) by 2-APB and ryanodine enhanced SP-evoked muscle contraction and Ca2+ mobilization. This potentiation was virtually abolished by removal of external Ca2+, suggesting native Ca2+ channels may contribute to this phenomenon. These results demonstrate that tachykinins produce a potent muscle contraction associated with Ca2+ mobilization via tachykinin NK1- R-dependent activation of multiple signal transduction pathways involving Ca2+ influx and release of Ca2+ from InsP3- and ryanodine-sensitive Ca2+ stores. Blockade of both InsP3 receptor and RyR enhances the Ca2+ influx through native Ca2+ channels in plasma membrane, which is crucial to Ca2+ signaling in response to NK1 receptor activation.  相似文献   

17.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   

18.
Phosphorylation of the cardiac ryanodine receptor (RyR2) is thought to be important not only for normal cardiac excitation-contraction coupling but also in exacerbating abnormalities in Ca2+ homeostasis in heart failure. Linking phosphorylation to specific changes in the single-channel function of RyR2 has proved very difficult, yielding much controversy within the field. We therefore investigated the mechanistic changes that take place at the single-channel level after phosphorylating RyR2 and, in particular, the idea that PKA-dependent phosphorylation increases RyR2 sensitivity to cytosolic Ca2+. We show that hyperphosphorylation by exogenous PKA increases open probability (P o) but, crucially, RyR2 becomes uncoupled from the influence of cytosolic Ca2+; lowering [Ca2+] to subactivating levels no longer closes the channels. Phosphatase (PP1) treatment reverses these gating changes, returning the channels to a Ca2+-sensitive mode of gating. We additionally found that cytosolic incubation with Mg2+/ATP in the absence of exogenously added kinase could phosphorylate RyR2 in approximately 50% of channels, thereby indicating that an endogenous kinase incorporates into the bilayer together with RyR2. Channels activated by the endogenous kinase exhibited identical changes in gating behavior to those activated by exogenous PKA, including uncoupling from the influence of cytosolic Ca2+. We show that the endogenous kinase is both Ca2+-dependent and sensitive to inhibitors of PKC. Moreover, the Ca2+-dependent, endogenous kinase–induced changes in RyR2 gating do not appear to be related to phosphorylation of serine-2809. Further work is required to investigate the identity and physiological role of this Ca2+-dependent endogenous kinase that can uncouple RyR2 gating from direct cytosolic Ca2+ regulation.  相似文献   

19.
We have investigated the dynamics of the free [Ca2+] inside the secretory granules of neurosecretory PC12 and INS1 cells using a low-Ca2+-affinity aequorin chimera fused to synaptobrevin-2. The steady-state secretory granule [Ca2+] ([Ca2+]SG] was around 20–40 μM in both cell types, about half the values previously found in chromaffin cells. Inhibition of SERCA-type Ca2+ pumps with thapsigargin largely blocked Ca2+ uptake by the granules in Ca2+-depleted permeabilized cells, and the same effect was obtained when the perfusion medium lacked ATP. Consistently, the SERCA-type Ca2+ pump inhibitor benzohydroquinone induced a rapid release of Ca2+ from the granules both in intact and permeabilized cells, suggesting that the continuous activity of SERCA-type Ca2+ pumps is essential to maintain the steady-state [Ca2+]SG. Both inositol 1,4,5-trisphosphate (InsP3) and caffeine produced a rapid Ca2+ release from the granules, suggesting the presence of InsP3 and ryanodine receptors in the granules. The response to high-K+ depolarization was different in both cell types, a decrease in [Ca2+]SG in PC12 cells and an increase in [Ca2+]SG in INS1 cells. The difference may rely on the heterogeneous response of different vesicle populations in each cell type. Finally, increasing the glucose concentration triggered a decrease in [Ca2+]SG in INS1 cells. In conclusion, our data show that the secretory granules of PC12 and INS1 cells take up Ca2+ through SERCA-type Ca2+ pumps and can release it through InsP3 and ryanodine receptors, supporting the hypothesis that secretory granule Ca2+ may be released during cell stimulation and contribute to secretion.  相似文献   

20.
Calcium (Ca2+) plays diverse roles in all living organisms ranging from bacteria to humans. It is a structural element for bones, an essential mediator of excitation-contraction coupling, and a universal second messenger in the regulation of ion channel, enzyme and gene expression activities. In mitochondria, Ca2+ is crucial for the control of energy production and cellular responses to metabolic stress. Ca2+ uptake by the mitochondria occurs by the uniporter mechanism. The Mitochondrial Ca2+ Uniporter (MCU) protein has recently been identified as a core component responsible for mitochondrial Ca2+ uptake. MCU knockout (MCU KO) studies have identified a number of important roles played by this high capacity uptake pathway. Interestingly, this work has also shown that MCU-mediated Ca2+ uptake is not essential for vital cell functions such as muscle contraction, energy metabolism and neurotransmission. Although mitochondrial Ca2+ uptake was markedly reduced, MCU KO mitochondria still contained low but detectable levels of Ca2+. In view of the fundamental importance of Ca2+ for basic cell signalling, this finding suggests the existence of other currently unrecognized pathways for Ca2+ entry. We review the experimental evidence for the existence of alternative Ca2+ influx mechanisms and propose how these mechanisms may play an integral role in mitochondrial Ca2+ signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号