首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic therapy (PDT) is widely used in clinical practice to influence neoplasms in the presence of a photosensitizer, oxygen, and light source. The main problem of PDT of deep tumors is the problem of delivering excitation light (without lost of its intensity) inside the body. An alternative to the external light sources can be the internal light sources based on luciferase–substrate bioluminescent systems. In our work, we used the NanoLuc–furimazine system as an internal light source. This system can be successfully used to excite the protein photosensitizer miniSOG and to induce the phototoxicity of this flavoprotein in cancer cells during bioluminescent resonance energy transfer (BRET). It was shown that the mechanism of cell death caused by BRET-induced phototoxicity of mimiSOG in the presence of furimazine depends on the intracellular localization of the NanoLuc–miniSOG fusion protein: BRET-mediated activation of miniSOG in mitochondrial localization causes apoptosis, while the membrane localization of PS causes necrosis of cancer cells.  相似文献   

2.

Background

Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells.

Methods

HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo.

Results

Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG.

Conclusions

miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor.

General significance

This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.  相似文献   

3.
The concept of targeted therapy implies the development of bifunctional agents complementing the therapeutic module with a targeting one. A promising target for the delivery of imaging and/or toxic modules is the HER2 (ErbB2) receptor. Earlier, we have functionally characterized the targeted photosensitizers 4D5scFv–miniSOG and DARPin–miniSOG, causing the death of HER2-overexpressing cells when irradiated with blue light. However, the cytotoxicity of targeted toxins 4D5scFv–miniSOG and DARPin–miniSOG (both having functionally active targeted and cytotoxic modules in recombinant proteins) against human breast adenocarcinoma cells differs 5 times. The study of the dynamics of internalization of 4D5scFv–miniSOG and DARPin–miniSOG proteins in the complex with HER2 in this work showed that the rate of internalization contributes most significantly to the toxicity of these photosensitizers, because it determines the duration of the presence of the phototoxin in the lipid bilayer of the cell membrane, where its damaging effect is maximum.  相似文献   

4.
S A Benson  T J Silhavy 《Cell》1983,32(4):1325-1335
It has been proposed that the efficient localization of the outer membrane protein LamB requires a functional signal sequence and at least two additional regions contained within the mature protein. We define these regions more precisely by deletion analysis, and we describe methods for cloning deleterious lacZ fusions onto high-copy-number plasmids and generating in-frame deletions. Analysis of the effects of a series of internal lamB deletions on the export of a LamB-LacZ hybrid protein and of the LamB protein itself indicates that necessary informational signal(s) required for localization lie at the amino-terminal end of the protein. In addition, our analysis indicates that there is a region of information close to or within the fusion joint of the largest lamB-lacZ fusion that increases the efficiency of the export process. A unique deletion that removes a protein segment from amino acid 70 to 200 appears to prevent proteolytic removal of the signal sequence. Nevertheless, the mutant protein is exported to the outer membrane.  相似文献   

5.
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.  相似文献   

6.
To explore the association of the Newcastle disease virus (NDV) fusion (F) protein with cholesterol-rich membrane domains, its localization in detergent-resistant membranes (DRMs) in transfected cells was characterized. After solubilization of cells expressing the F protein with 1% Triton X-100 at 4 degrees C, ca. 40% of total, cell-associated F protein fractionated with classical DRMs with densities of 1.07 to l.14 as defined by flotation into sucrose density gradients. Association of the F protein with this cell fraction was unaffected by the cleavage of F(0) to F(1) and F(2) or by coexpression of the NDV attachment protein, the hemagglutinin-neuraminidase protein (HN). Furthermore, elimination by mutation, of potential palmitate addition sites in and near the F-protein transmembrane domain had no effect on F-protein association with DRMs. Rather, specific deletions of the cytoplasmic domain of the F protein eliminated association with classical DRMs. Comparisons of deletions that affected fusion activity of the protein and deletions that affected DRM association suggested that there is no direct link between the cell-cell fusion activity of the F protein and DRM association. Furthermore, depletion of cholesterol from cells expressing F and HN protein, while eliminating DRM association, had no effect on the ability of these cells to fuse with avian red blood cells. These results suggest that specific localization of the F protein in cholesterol-rich membrane domains is not required for cell-to-cell fusion. Paramyxovirus F-protein cytoplasmic domains have been implicated in virus assembly. The results presented here raise the possibility that the cytoplasmic domain is important in virus assembly at least in part because it directs the protein to cholesterol-rich membrane domains.  相似文献   

7.
8.
We have explored a modified cytosolic yeast-two-hybrid Sos-recruitment system (SRS) in order to test for membrane localization of a protein. In this system, membrane localization is assessed by rescue of a yeast strain carrying a temperature-sensitive mutation in the CDC25 gene (cdc25-2) at restrictive temperature. The homologous human Sos (hSos) is capable to replace cdc25-2 provided that it is attached to the membrane because only then hSos is functional. This can be achieved when hSos is artificially fused to a protein containing trans-membrane domains (Tms). GFP/YFP fusion construct analyses of the Arabidopsis thaliana PEPINO/PASTICCINO2 (PEP/PAS2) protein have previously shown disparate cellular localizations although this protein possesses clear Tms. Analysis of N-terminal and C-terminal hSos-PEP/PAS2 fusions respectively suggests, that PEP/PAS2 is an integral membrane protein with cytosolic N- and C-termini. This implies that the protein has an even number of Tms and that the first Tm, a signal peptide, is not cleaved off. Our study shows that SRS is suitable to test for protein membrane localization and possibly for more detailed topological analysis of membrane proteins.  相似文献   

9.
Electron microscopy (EM) achieves the highest spatial resolution in protein localization, but specific protein EM labeling has lacked generally applicable genetically encoded tags for in situ visualization in cells and tissues. Here we introduce "miniSOG" (for mini Singlet Oxygen Generator), a fluorescent flavoprotein engineered from Arabidopsis phototropin 2. MiniSOG contains 106 amino acids, less than half the size of Green Fluorescent Protein. Illumination of miniSOG generates sufficient singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by EM. MiniSOG fusions to many well-characterized proteins localize correctly in mammalian cells, intact nematodes, and rodents, enabling correlated fluorescence and EM from large volumes of tissue after strong aldehyde fixation, without the need for exogenous ligands, probes, or destructive permeabilizing detergents. MiniSOG permits high quality ultrastructural preservation and 3-dimensional protein localization via electron tomography or serial section block face scanning electron microscopy. EM shows that miniSOG-tagged SynCAM1 is presynaptic in cultured cortical neurons, whereas miniSOG-tagged SynCAM2 is postsynaptic in culture and in intact mice. Thus SynCAM1 and SynCAM2 could be heterophilic partners. MiniSOG may do for EM what Green Fluorescent Protein did for fluorescence microscopy.  相似文献   

10.
After integration into the endoplasmic reticulum (ER) membrane, ER-resident membrane proteins must be segregated from proteins that are exported to post-ER compartments. Here we analyze how human Gaa1 and PIG-T, two of the five subunits of the ER-localized glycosylphosphatidylinositol transamidase complex, are retained in the ER. Neither protein contains a known ER localization signal. Gaa1 is a polytopic membrane glycoprotein with a cytoplasmic N terminus and a large luminal loop between its first two transmembrane spans; PIG-T is a type I membrane glycoprotein. To simplify our analyses, we studied Gaa1 and PIG-T constructs that could not interact with other subunits of the transamidase. We now show that Gaa1(282), a truncated protein consisting of the first TM domain and luminal loop of Gaa1, is correctly oriented, N-glycosylated, and ER-localized. Removal of a potential ER localization signal in the form of a triple arginine cluster near the N terminus of Gaa1 or Gaa1(282) had no effect on ER localization. Fusion proteins consisting of different elements of Gaa1(282) appended to alpha2,6-sialyltransferase or transferrin receptor could exit the ER, indicating that Gaa1(282), and by implication Gaa1, does not contain any dominant ER-sorting determinants. The data suggest that Gaa1 is passively retained in the ER by a signalless mechanism. In contrast, similar analyses of PIG-T revealed that it is ER-localized because of information in its transmembrane span; fusion of the PIG-T transmembrane span to Tac antigen, a plasma membrane-localized protein, caused the fusion protein to remain in the ER. These data are discussed in the context of models that have been proposed to account for retention of ER membrane proteins.  相似文献   

11.
The C-terminal PDZ-binding motifs are required for polarized apical/basolateral localization of many membrane proteins. To determine the specificity of the PDZ-binding motifs in establishing cellular distribution, we utilized a 111-amino acid region from the C-terminus of cystic fibrosis transmembrane conductance regulator (CFTR) that is able to direct apical localization of fused reporter proteins. Substitution of the C-terminal PDZ-binding motif of CFTR with corresponding motifs necessary for basolateral localization of other membrane proteins did not lead to the redistribution of the fusion protein to the basolateral membrane. Instead, some fusion proteins remained localized to the apical membrane, whereas others showed no specific distribution. The specificity of the PDZ-based interactions was substantially increased when specific amino acids located upstream of the classical PDZ-binding motifs were included. However, even the presence of a longer C-terminal motif from a basolateral protein could not ensure basolateral distribution of the fusion protein. Our results indicate that the C-terminal PDZ-binding motifs are not the primary signals for polarized protein distribution, although they are required for targeting and/or stabilization of protein at the given location.  相似文献   

12.
Kim DW  Kim SY  Lee SH  Lee YP  Lee MJ  Jeong MS  Jang SH  Park J  Lee KS  Kang TC  Won MH  Cho SW  Kwon OS  Eum WS  Choi SY 《BMB reports》2008,41(2):170-175
In protein therapy, it is important for exogenous protein to be delivered into the target subcellular localization. To transduce a therapeutic protein into its specific subcellular localization, we synthesized nuclear localization signal (NLS) and membrane translocation sequence signal (MTS) peptides and produced a genetic in-frame SOD fusion protein. The purified SOD fusion proteins were efficiently transduced into mammalian cells with enzymatic activities. Immunofluorescence and Western blot analysis revealed that the SOD fusion proteins successfully transduced into the nucleus and the cytosol in the cells. The viability of cells treated with paraquat was markedly increased by the transduced fusion proteins. Thus, our results suggest that these peptides should be useful for targeting the specific localization of therapeutic proteins in various human diseases.  相似文献   

13.
Nanoluciferase (NanoLuc) is a newly developed small luciferase reporter with the brightest bioluminescence to date. In the present work, we developed NanoLuc as a sensitive bioluminescent reporter to measure quantitatively the internalization of cell membrane receptors, based on the pH dependence of the reporter activity. The G protein-coupled receptor RXFP3, the cognate receptor of relaxin-3/INSL7, was used as a model receptor. We first generated stable HEK293T cells that inducibly coexpressed a C-terminally NanoLuc-tagged human RXFP3 and a C-terminally enhanced green fluorescent protein (EGFP)-tagged human RXFP3. The C-terminal EGFP-tag and NanoLuc-tag had no detrimental effects on the ligand-binding potency and intracellular trafficking of RXFP3. Based on the fluorescence of the tagged EGFP reporter, the ligand-induced RXFP3 internalization was visualized directly under a fluorescence microscope. Based on the bioluminescence of the tagged NanoLuc reporter, the ligand-induced RXFP3 internalization was measured quantitatively by a convenient bioluminescent assay. Coexpression of an EGFP-tagged inactive [E141R]RXFP3 had no detrimental effect on the ligand-binding potency and ligand-induced internalization of the NanoLuc-tagged wild-type RXFP3, suggesting that the mutant RXFP3 and wild-type RXFP3 worked independently. The present bioluminescent internalization assay could be extended to other G protein-coupled receptors and other cell membrane receptors to study ligand –receptor and receptor–receptor interactions.  相似文献   

14.
15.
A split NanoLuc assay system consisting of two fragments, large N-terminal and small C-terminal regions (NanoBiT), was developed to investigate protein-protein interactions within living cells. Interestingly, the replacement of five amino acids among 11 C-terminal amino acids dramatically increased affinity against the large N-terminal fragment, LgBiT, and the complex had NanoLuc luciferase activity. In this study, we first applied this small fragment, HiBiT, to elucidate the expression of ATF4 protein by transient overexpression of HiBiT-tagged ATF4. According to the regulation of intrinsic ATF4 protein, stabilization of HiBiT-tagged ATF4 with a proteasome inhibitor, MG132, was observed by detecting luciferase activity in cell lysate and after SDS-PAGE and transfer onto a PVDF membrane. Next, we knocked-in the HiBiT-epitope tag into the ATF4 gene using the CRISPR/Cas9 system and rapidly selected positive clones by measuring luciferase activity in an aliquot of each cell suspension. Using a selected clone, we observed that the expression of HiBiT-tagged ATF4 in the selected cells varied in response to treatment with protein synthesis inhibitors or proteasome inhibitors and tunicamycin. Altogether, this novel HiBiT tag is a useful tool to evaluate the endogenous expression levels of proteins of interest.  相似文献   

16.
We are studying the molecular mechanism of cellular protein localization. The availability of genetic techniques, such as gene fusion in Escherichia coli, has made this problem particularly amenable to study in this prokaryote. We have constructed a variety of strains in which the gene coding for an outer membrane protein is fused to the gene coding for a normally cytoplasmic enzyme, beta-galactosidase. The hybrid proteins produced by such strains retain beta-galactosidase activity; this activity serves as a simple biochemical tag for studying the localization of the outer membrane protein. In addition, we have exploited phenotypes exhibited by certain fusion strains to isolate mutants that are altered in the process of protein export. Genetic and biochemical analyses of such mutants have provided evidence that the molecular mechanism of cellular protein localization is strinkingly similar in both bacteria and animal cells.  相似文献   

17.
The NHE6 protein is a unique Na(+)/H(+) exchanger isoform believed to localize in mitochondria. It possesses a hydrophilic N-terminal portion that is rich in positively charged residues and many hydrophobic segments. In the present study, signal sequences in the NHE6 molecule were examined for organelle localization and membrane topogenesis. When the full-length protein was expressed in COS7 cells, it localized in the endoplasmic reticulum and on the cell surface. Furthermore, the protein was fully N-glycosylated. When green fluorescent protein was fused after the second (H2) or third (H3) hydrophobic segment, the fusion proteins were targeted to the endoplasmic reticulum (ER) membrane. The localization pattern was the same as that of fusion proteins in which green fluorescent protein was fused after H2 of NHE1. In an in vitro system, H1 behaved as a signal peptide that directs the translocation of the following polypeptide chain and is then processed off. The next hydrophobic segment (H2) halted translocation and eventually became a transmembrane segment. The N-terminal hydrophobic segment (H1) of NHE1 also behaved as a signal peptide. Cell fractionation studies using antibodies against the 15 C-terminal residues indicated that NHE6 protein localized in the microsomal membranes of rat liver cells. All of the NHE6 molecules in liver tissue possess an endoglycosidase H-resistant sugar chain. These findings indicate that NHE6 protein is targeted to the ER membrane via the N-terminal signal peptide and is sorted to organelle membranes derived from the ER membrane.  相似文献   

18.
Basic amino acid residues were introduced into an extracellular (periplasmic) domain, preceding a membrane-spanning hydrophobic domain, of SecY, an integral cytoplasmic membrane protein. The localization of the domain was monitored as to the alkaline phosphatase activity of TnPhoA fused adjacent to the domain. The alkaline phosphatase activity of such Escherichia coli cells drastically decreased when positive charges were introduced, indicating that on the introduction the SecY domain showed a change in localization from the periplasm to the cytoplasm. In another experiment, positive charges were introduced to the same periplasmic domain of another SecY-PhoA fusion protein, in which PhoA is fused to the cytoplasmic domain of SecY following the particular hydrophobic domain. The alkaline phosphatase activity increased drastically when positive charges were introduced, indicating that the SecY domain fused to PhoA showed a change in localization from the cytoplasm to the periplasm. In both experiments, the removal of a large amino-terminal portion of the SecY domain did not alter the effect of the positive charge introduction. Changes in localization of SecY domains thus demonstrated were also supported by a protease accessibility test on spheroplasts. It is proposed that a positively charged region adjacent to a membrane-embedded hydrophobic region tends to be stabilized on the cytoplasmic surface of the membrane, which in turn endows the hydrophobic region with the ability to act as a stop-transfer sequence or a signal sequence and consequently determines the orientation of the hydrophobic region in the membrane.  相似文献   

19.
20.
To understand molecular mechanisms that regulate the intricate and dynamic organization of the endosomal compartment, it is important to establish the morphology, molecular composition, and functions of the different organelles involved in endosomal trafficking. Syntaxins and vesicle-associated membrane protein (VAMP) families, also known as soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), have been implicated in mediating membrane fusion and may play a role in determining the specificity of vesicular trafficking. Although several SNAREs, including VAMP3/cellubrevin, VAMP8/endobrevin, syntaxin 13, and syntaxin 7, have been localized to the endosomal membranes, their precise localization, biochemical interactions, and function remain unclear. Furthermore, little is known about SNAREs involved in lysosomal trafficking. So far, only one SNARE, VAMP7, has been localized to late endosomes (LEs), where it is proposed to mediate trafficking of epidermal growth factor receptor to LEs and lysosomes. Here we characterize the localization and function of two additional endosomal syntaxins, syntaxins 7 and 8, and propose that they mediate distinct steps of endosomal protein trafficking. Both syntaxins are found in SNARE complexes that are dissociated by alpha-soluble NSF attachment protein and NSF. Syntaxin 7 is mainly localized to vacuolar early endosomes (EEs) and may be involved in protein trafficking from the plasma membrane to the EE as well as in homotypic fusion of endocytic organelles. In contrast, syntaxin 8 is likely to function in clathrin-independent vesicular transport and membrane fusion events necessary for protein transport from EEs to LEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号