首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has not yet contributed widely to the study of intact noncovalent biomolecular complexes, because MALDI is known to cause dissociation of the interaction partners and induce formation of nonspecific aggregates. Here, we present a new strategy to circumvent this problem. It is based on intensity fading (in the low m/z range) and high-mass detection MALDI mass spectrometry (MS), using a cryodetector (in the high m/z range), with and without chemical cross-linking of the interaction partners. The study focuses on noncovalent interactions between the human enzyme carboxypeptidase A (hCPA) and three protease inhibitors (PCI, TCI, and LCI) present in heterogeneous mixtures of other nonbinding molecules derived from a biological source, an extract from leech (Hirudo medicinalis). Another example involves an extract of the sea anemone Stichodactyla helianthus, which is used without previous fractionation to detect the specific complex between the enzyme trypsin and the endogenous SphI-1 inhibitor. The results give insight into the mechanism of intensity fading MS and demonstrate that the specificity of binding is greatly favored when the overall concentrations of the analytes (nonbinding molecules, protease inhibitor and target enzyme) present in a biological sample of interest are kept at low concentrations, in the sub-micromolar range. Higher concentrations may lead to unspecific interactions and the formation of aggregates both during the MALDI process and during reaction with the cross-linking reagents. This strategy is expected to advance the field of high-throughput affinity-based approaches, by taking advantage of a new generation of high mass detectors for MALDI-TOF instruments.  相似文献   

2.
A high-performance liquid chromatographic method using liquid-liquid extraction was developed for the determination of 1-(3-fluoro-4-hydroxy-5-mercaptomethyl-tetrahydrofuran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione (l-FMAUS; I) in rat plasma and urine. A 100 microl aliquot of distilled water containing l-cysteine (100 mg/ml) was added to a 100 microl aliquot of biological sample. l-Cysteine was employed to protect binding between the 5'-thiol of I and protein in the biological sample. After vortex-mixing for 30s and adding a 50 microl aliquot of the mobile phase containing the internal standard (10 microg/ml of 3-aminophenyl sulfone), 1 ml of ethyl acetate was used for extraction. After vortex-mixing, centrifugation, and evaporating the ethyl acetate, the residue was reconstituted with a 100 microl aliquot of the mobile phase. A 50 microl aliquot was injected onto a C(18) reversed-phase column. The mobile phases, 50 mM KH(2)PO(4) (pH = 2.5):acetonitrile (85:15, v/v) for rat plasma and 50 mM KH(2)PO(4) (pH 2.5):acetonitrile:methanol (85:10:5, v/v/v) for urine samples, were run at a flow-rate of 1.2 ml/min. The column effluent was monitored by an ultraviolet detector set at 265 nm. The retention times for I and the internal standard were approximately 9.7 and 12.5 min, respectively, in plasma samples and the corresponding values in urine samples were 16.8 and 14.9 min. The quantitation limits of I in rat plasma and urine were 0.1 and 0.5 microg/ml, respectively.  相似文献   

3.
The quantification of target analytes in complex matrices requires special calibration approaches to compensate for additional capacity or activity in the matrix samples. The standard addition is one of the most important calibration procedures for quantification of analytes in such matrices. However, this technique requires a great number of reagents and material, and it consumes a considerable amount of time throughout the analysis. In this work, a new calibration procedure to analyze biological samples is proposed. The proposed calibration, called the addition calibration technique, was used for the determination of zinc (Zn) in blood serum and erythrocyte samples. The results obtained were compared with those obtained using conventional calibration techniques (standard addition and standard calibration). The proposed addition calibration was validated by recovery tests using blood samples spiked with Zn. The range of recovery for blood serum and erythrocyte samples were 90-132% and 76-112%, respectively. Statistical studies among results obtained by the addition technique and conventional techniques, using a paired two-tailed Student's t-test and linear regression, demonstrated good agreement among them.  相似文献   

4.
Interest in the biological behavior of a growing number of elements, along with increasing recognition of the importance of interactions among them, demands a versatile and reliable technique for multielement analysis of biological samples. Significant improvements over the sensitivity achieved with conventional inductively coupled plasma (ICP) optical emission spectrometries have been realized with the introduction of quadrupole mass spectrometry (MS) for detection of ions in the plasma. The hybrid technique of ICP-MS promises to be a method of rapid multielement analysis, at detection limits that approach or surpass those of other technologies. However, the application of ICP-MS to analyses of biological interest is truly in its infancy. Here we report the use of ICP-MS for the determination of more than 30 elements of biological interest in a tissue and a biological fluid (rat liver and serum, respectively). Experimental values of the elements serve as a basis for discussion of analytical protocols, performance criteria, and certain problems peculiar to ICP-MS.  相似文献   

5.
Neutral lipids are a diverse family of hydrophobic biomolecules that have important roles in cellular biochemistry of all living species but have in common the property of charge neutrality. A large component of neutral lipids is the glycerolipids composed of triacylglycerols, diacylglycerols, and monoacylglycerols that can serve as cellular energy stores as well as signaling molecules. Another abundant lipid class in many cells is the cholesterol esters that are on one hand sterols and the other fatty acyl lipids, but in either case are neutral lipids involved in cholesterol homeostasis and transport in the blood. The analysis of these molecules in the context of lipidomics remains challenging because of their charge neutrality and the complex mixtures of molecular species present in cells. Various techniques have been used to ionize these neutral lipids prior to mass spectrometric analysis including electron ionization, atmospheric chemical ionization, electrospray ionization and matrix assisted laser desorption/ionization. Various approaches to deal with the complex mixture of molecular species have been developed including shotgun lipidomics and chromatographic-based separations such as gas chromatography, reversed phase liquid chromatography, and normal phase liquid chromatography. Several applications of these approaches are discussed. .  相似文献   

6.
Peroxidation of membrane lipids has been hypothesized to play a key role in various types of tissue degeneration and pathology. Lipid peroxides are formed when oxygen reacts with an unsaturated fatty acid chain. Virtually all of the unsaturated fatty acids in biological systems are bound by ester linkages in phospholipids or triglycerides. Phospholipid and triglyceride peroxides are primary products of lipid peroxidation and have rarely been measured. Most of the commonly used methods for detection of lipid peroxidation are based on detection of malondialdehyde or other chemical species that are derived from oxidized fatty acids. This review presents an overview of recently developed methods aimed at identifying and measuring oxidized phospholipids and triglycerides which are direct evidence of the occurrence of lipid peroxidation in vivo.  相似文献   

7.
8.
Methods have been developed for the simultaneous quantitative analysis of vitamin B6 forms in biological samples by isotope dilution mass spectrometry using deuterated forms of pyridoxine, pyridoxal, pyridoxamine, and pyridoxic acid. The biological fluid or tissue sample was homogenized and then treated with a cocktail containing appropriate amounts of each deuterated vitamer, as well as the deuterated, phosphorylated vitamer forms. The individual vitamers were isolated from the homogenate by a complex high-performance liquid chromatographic procedure that provided separate fractions for each of the six vitamers found in biological samples. Aldehydic B6 vitamers were reduced to the alcohol form prior to acetylation and analysis by gas chromatography/mass spectrometry (GC/MS). The three resulting vitamers were analyzed by electron ionization GC/MS using a silicone capillary column. The methods have been applied to analysis of vitamin B6 in liver, milk, urine, and feces at levels as low as 0.02 nmol/ml.  相似文献   

9.
10.

Background

Electron paramagnetic resonance (EPR) spectroscopy (also known as electron spin resonance, ESR, spectroscopy) is widely considered to be the “gold standard” for the detection and characterisation of radicals in biological systems.

Scope of review

The article reviews the major positive and negative aspects of EPR spectroscopy and discusses how this technique and associated methodologies can be used to maximise useful information, and minimise artefacts, when used in biological studies. Consideration is given to the direct detection of radicals (at both ambient and low temperature), the use of spin trapping and spin scavenging (e.g. reaction with hydroxylamines), the detection of nitric oxide and the detection and quantification of some transition metal ions (particularly iron and copper) and their environment.

Major conclusions

When used with care this technique can provide a wealth of valuable information on the presence of radicals and some transition metal ions in biological systems. It can provide definitive information on the identity of the species present and also information on their concentration, structure, mobility and interactions. It is however a technique that has major limitations and the user needs to understand the various pitfalls and shortcoming of the method to avoid making errors.

General significance

EPR remains the most definitive method of identifying radicals in complex systems and is also a valuable method of examining radical kinetics, concentrations and structure. This article is part of a Special Issue entitled Current methods to study reactive oxygen species — pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

11.
A detailed procedure of a gas chromatographic mass spectrometric assay for beta-phenylethylamine in biological samples, after its reaction with carbon disulphide to form the isothiocyanate derivative, is presented. Our method has advantages over the previous methods with the pentafluoropropionic derivative of beta-phenylethylamine in that the isothiocyanate derivative of beta-phenylethylamine is much more stable than the pentafluoropropionic derivative and that the background in selected ion monitoring is very low. Using the present method, the levels of beta-phenylethylamine in human urine, untreated and pargyline-treated rat brain were found to be 15.3 micrograms 24 h-1, 1.4 and 160 ng g-1 wet weight, respectively.  相似文献   

12.
We present fast LC–MS–MS analyses of multicomponent mixtures containing flavones, sulfonamides, benzodiazepines and tricyclic amines. Using a short microbore HPLC column with small particle size, five to eight compounds were partially resolved within 15 to 30 s. TurboIonSpray and atmospheric pressure chemical ionization interfaces were well suited to tolerate the higher eluent flow-rates of 1.2 to 2 ml/min. The methods were applied to biological sample matrices after clean-up using solid-phase or liquid–liquid extraction. Good precision and accuracy (average 8.9 and 97.7%, respectively) were achieved for the determination of tricyclic amines in human plasma. Benzodiazepines were determined in human urine with average precision of 9% and average accuracy of 95% for intra- and inter-assay. Detection limits in the low ng/ml range were obtained. An example for 240 injections per hour of demonstrated the feasibility of rapid LC–MS–MS analysis.  相似文献   

13.
The major metabolites and breakdown products of some toxic organophosphonates are their respective alkymethylphosphonic acids. These acids ionize at physiological pH and are not amenable to gas chromatographic analysis in their underivatized forms. Their detection in biological samples has been difficult because of their presence at only trace levels. Existing analytical methods were developed mainly for measuring these phosphonic acids in environmental samples and at higher concentrations. In this study, we devised a gas chromatographic/mass spectrometric method to provide confirmation and quantification of the organophosphonic acids of soman (GD), sarin (GB) and GF in blood and urine. This report describes the various derivatization conditions that we have studied and demonstrates the characteristic mass spectra by different ionization techniques.  相似文献   

14.
A simple, rapid and sensitive method for determination of trichloroethylene (TCE) in rat blood, liver, lung, kidney and brain, using headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS), is presented. A 100-microm polydimethylsiloxane (PDMS) fiber was selected for sampling. The major analytical parameters including extraction and desorption temperature, extraction and desorption time, salt addition, and sample preheating time were optimized for each of the biological matrices to enhance the extraction efficiency and sensitivity of the method. The lower limits of quantitation for TCE in blood and tissues were 0.25ng/ml and 0.75ng/g, respectively. The method showed good linearity over the range of 0.25-100ng TCE/ml in blood and 0.75-300ng TCE/g in tissues, with correlation coefficient (R(2)) values higher than 0.994. The precision and accuracy for intra-day and inter-day measurements were less than 10%. The relative recoveries of TCE respect to deionized water from all matrices were greater than 55%. Stability tests including autosampler temperature and freeze and thaw of specimens were also investigated. This validated method was successfully applied to study the toxicokinetics of TCE following administration of a low oral dose.  相似文献   

15.
We present an optimized and validated liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the simultaneous measurement of concentrations of different ceramide species in biological samples. The method of analysis of tissue samples is based on Bligh and Dyer extraction, reverse-phase high-performance liquid chromatography separation, and multiple reaction monitoring of ceramides. Preparation of plasma samples also requires isolation of sphingolipids by silica gel column chromatography prior to LC-ESI-MS/MS analysis. The limits of quantification were in a range of 0.01-0.50 ng/ml for distinct ceramides. The method was reliable for inter- and intraassay precision, accuracy, and linearity. Recoveries of ceramide subspecies from human plasma, rat liver, and muscle tissue were 78 to 91%, 70 to 99%, and 71 to 95%, respectively. The separation and quantification of several endogenous long-chain and very-long-chain ceramides using two nonphysiological odd chain ceramide (C17 and C25) internal standards was achieved within a single 21-min chromatographic run. The technique was applied to quantify distinct ceramide species in different rat tissues (muscle, liver, and heart) and in human plasma. Using this analytical technique, we demonstrated that a clinical exercise training intervention reduces the levels of ceramides in plasma of obese adults. This technique could be extended for quantification of other ceramides and sphingolipids with no significant modification.  相似文献   

16.
Historically considered to be simple membrane components serving as structural elements and energy storing entities, fatty acids are now increasingly recognized as potent signaling molecules involved in many metabolic processes. Quantitative determination of fatty acids and exploration of fatty acid profiles have become common place in lipid analysis. We present here a reliable and sensitive method for comprehensive analysis of free fatty acids and fatty acid composition of complex lipids in biological material. The separation and quantitation of fatty acids are achieved by capillary gas chromatography. The analytical method uses pentafluorobenzyl bromide derivatization and negative chemical ionization gas chromatography-mass spectrometry. The chromatographic procedure provides base line separation between saturated and unsaturated fatty acids of different chain lengths as well as between most positional isomers. Fatty acids are extracted in the presence of isotope-labeled internal standards for high quantitation accuracy. Mass spectrometer conditions are optimized for broad detection capacity and sensitivity capable of measuring trace amounts of fatty acids in complex biological samples. .  相似文献   

17.
A simple, rapid and sensitive method for procaine determination is described. Isotope dilution mass spectrometry with (15N)procaine as internal standard was used. The analysis was performed at 4000 resolution by selected ion monitoring with temperature programming. The sample was measured in underivatized form in the direct inlet system. The method shows good analytical parameters: linearity between 0 and 40 micrograms ml-1, good precision and accuracy. The method was applied to the in vitro pharmacokinetic study of the metabolism of procaine in liver homogenates of Wistar rats. The method is rapid, permitting about six samples to be run per hour. Sensitivity of the method permits analysis at a signal-to-noise ratio of 5:1.  相似文献   

18.
A method for quantification of unlabeled alpha-tocopherol and the deuterated tocopherols, RRR-alpha-5-(CD(3))-tocopherol (d(3)RRR) and all rac-alpha-5,7-(CD(3))(2) tocopherol (d(6)all-rac) in plasma by HPLC-tandem mass spectrometry (LC-MS/MS) has been developed. Deuterated and unlabeled alpha-tocopherols were separated by HPLC and were detected by positive ion multiple-reaction monitoring using a triple-quadrupole mass spectrometer equipped with a heated nebulizer-atmospheric pressure chemical ionization interface, following routine extraction of vitamin E from plasma. The accuracy and precision were evaluated by replicate analysis of standards and samples. Human plasma samples, which were obtained at different times after the subject had consumed a capsule containing 1:1 ratio of d(3)RRR and d(6)all rac-alpha-tocopheryl acetates, were analyzed with this method. Plasma deuterated alpha-tocopherols measured by LC-MS/MS followed the same pattern as previously demonstrated by GC-MS measurement, without requiring an extra derivitization step. The detection limit was 10 pmol for each form of alpha-tocopherol injected.  相似文献   

19.
D-erythro-sphingosine (Sph) and its phosphorylated product, d-erythro-sphingosine 1-phosphate (S1P) are sphingolipids mediating numerous cellular processes. Imbalance of Sph/S1P levels contributes to many diseases. Given the interconversion of these two opposing signaling molecules, it is essential to examine their levels simultaneously. In the present study, we developed a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to simultaneously quantify the levels of Sph and S1P in biological samples using C17-Sph and C17-S1P as internal standards. With one step of methanol-induced protein precipitation, each sample was subjected to LC-MS/MS analysis using positive electrospray ionization under selected reaction monitoring mode. The running time was within 4 min with a simple mobile phase consisting of methanol-0.1% formic acid (95:5, v/v) at a flow rate of 0.2 mL/min. Standard curves were linear over ranges of 1-100 ng/mL for Sph and 0.1-10 ng/mL for S1P with correlation coefficient (r2) greater than 0.997. The lower limit of quantifications (LLOQs) were 1 ng/mL for Sph and 0.1 ng/mL for S1P. The intra-batch and inter-batch precision was less than 15% for all quality control samples. The recoveries of the method were found to be 76.36-89.84%. The method was applied to simultaneously determine the Sph and S1P levels in mouse kidney, human plasma, and HEK 293 cells treated with tumor necrosis factor-α (TNF-α) and N,N-dimethylsphingosine (DMS). The S1P levels increased in cells treated with TNF-α whereas decreased in cells treated with DMS. These results indicated that this new LC-MS/MS method was rapid, sensitive, specific and reliable to quantify Sph and S1P levels in biological samples simultaneously.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号