首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Tomita  H Shirasawa    B Simizu 《Journal of virology》1987,61(8):2389-2394
The human papillomavirus (HPV) genome contains two large open reading frames (ORFs), designated L1 and L2. To characterize the antigenic properties of the L1 ORF-encoded proteins, we cloned the L1 ORFs of HPV6b and HPV16 in plasmids, and these were expressed in Escherichia coli. First, the HPV6b DNA, representing 85.2% of the L1 ORF, was cloned in pUC19 and expressed in E. coli JM83 and RB791 as a 160,000-molecular-weight (160K) fusion protein with E. coli beta-galactosidase (6bL1/beta-gal). Second, the HPV16 DNA, representing 89.8% of the L1 ORF, was cloned in pKK233-2 and expressed as a 56K protein (16L1) in strain RB791. Both the 6bL1/beta-gal and 16L1 proteins cross-reacted with anti-bovine papillomavirus type 1 (BPV1) antibody raised against disrupted BPV1 particles. An antibody raised against the 6bL1/beta-gal fusion protein reacted with the 16L1 protein and also with native papillomavirus antigens in human genital condyloma and bovine fibropapilloma tissues, as determined by biotin-streptavidin staining. Furthermore, the anti-6bL1/beta-gal antibody recognized a 54K protein which seemed to be a major capsid protein of BPV1 and also a 56K protein of biopsies harboring HPV6 or HPV11. From these results we concluded that the papillomavirus L1 gene product contains genus-specific (common) antigens and that the HPV6 and HPV11 L1 genes specify the 56K capsid protein.  相似文献   

2.

Background

Human papillomavirus (HPV) capsids are composed of 72 pentamers of the major capsid protein L1, and an unknown number of L2 minor capsid proteins. An N-terminal “external loop” of L2 contains cross-neutralizing epitopes, and native HPV16 virions extracted from 20-day-old organotypic tissues are neutralized by anti-HPV16 L2 antibodies but virus from 10-day-old cultures are not, suggesting that L2 epitopes are more exposed in mature, 20-day virions. This current study was undertaken to determine whether cross-neutralization of other HPV types is similarly dependent on time of harvest and to screen for the most effective cross-neutralizing epitope in native virions.

Methodology and Principal Findings

Neutralization assays support that although HPV16 L2 epitopes were only exposed in 20-day virions, HPV31 or HPV18 epitopes behaved differently. Instead, HPV31 and HPV18 L2 epitopes were exposed in 10-day virions and remained so in 20-day virions. In contrast, presumably due to sequence divergence, HPV45 was not cross-neutralized by any of the anti-HPV16 L2 antibodies. We found that the most effective cross-neutralizing antibody was a polyclonal antibody named anti-P56/75 #1, which was raised against a peptide consisting of highly conserved HPV16 L2 amino acids 56 to 75.

Conclusions and Significance

This is the first study to determine the susceptibility of multiple, native high-risk HPV types to neutralization by L2 antibodies. Multiple anti-L2 antibodies were able to cross-neutralize HPV16, HPV31, and HPV18. Only neutralization of HPV16 depended on the time of tissue harvest. These data should inform attempts to produce a second-generation, L2-based vaccine.  相似文献   

3.
Lack of permissive and productive cell cultures for the human papillomaviruses (HPVs) has hindered the study of virus-neutralizing antibodies and infection. We developed a cell-free system generating infectious HPV16 pseudovirions. HPV16 L1/L2 capsids, which had been self-assembled in insect cells (Sf9) expressing virion proteins L1 and L2, were disassembled with 2-mercaptoethanol (2-ME), a reducing agent, and reassembled by removal of 2-ME in the presence of a β-galactosidase expression plasmid. Plasmid DNA purified together with the reassembled capsids was resistant to DNase I digestion. The reassembled pseudovirions mediated DNA transfer to COS-1 cells, as monitored by induced β-galactosidase activity. Transfer was inhibited by anti-HPV16 L1 antiserum but not by antisera against L1s of HPV6 and HPV18. Construction in vitro of HPV pseudovirions containing marker plasmids would be potentially useful in developing methods to assay virus-neutralizing antibodies and to transfer exogenous genes to HPV-susceptible cells.  相似文献   

4.
The immunogenicity of plant-made peroral vaccine against cervical cancer was studied in mice during 342 days after vaccination with the material of tomato fruits genetically transformed with HPV16 L1 ? 5′UTR TMV. The immune response was found on day 4 after vaccination in blood serum of vaccinated mice. On days 90–100, the rise to maximum value of the level of antibodies to HPV16 L1 was in the range of 500 ng of the standard antibodies to HPV16 L1 (Santa Cruz Biotechnology, United States). This level of antibodies was retained until the end of the study.  相似文献   

5.
Adeno-associated viruses (AAV) have been developed and evaluated as recombinant vectors for gene therapy in many preclinical studies, as well as in clinical trials. However, only a few approaches have used recombinant AAV (rAAV) to deliver vaccine antigens. We generated an rAAV encoding the major capsid protein L1 (L1h) from the human papillomavirus type 16 (HPV16), aiming to develop a prophylactic vaccine against HPV16 infections, which are the major cause of cervical cancer in women worldwide. A single dose of rAAV5 L1h administered intranasally was sufficient to induce high titers of L1-specific serum antibodies, as well as mucosal antibodies in vaginal washes. Seroconversion was maintained for at least 1 year. In addition, a cellular immune response was still detectable 60 weeks after immunization. Furthermore, lyophilized rAAV5 L1h successfully evoked a systemic and mucosal immune response in mice. These data clearly show the efficacy of a single-dose intranasal immunization against HPV16 based on the recombinant rAAV5L1h vector without the need of an adjuvant.  相似文献   

6.
To enhance the immunogenicity of human papillomavirus 16 (HPV 16) virus-like particles (VLPs), the modified adjuvant, mLTK63, was fused to the C-terminus of HPV 16 L2 protein. Coexpression of HPV 16 L1 and L2-mLTK63 proteins in insect cells led to the efficient assembly of HPV 16 L1/L2-mLTK63 chimeric VLPs (cVLPs), which combined the antigen and adjuvant as a unit. Compared with HPV 16 L1/L2 VLPs, the HPV 16 L1/L2-mLTK63 cVLPs had similar structural biology characteristics and binding activities with the cell surface receptors and HPV 16-specific neutralizing monoclonal antibodies. Intramuscular immunization of BALB/c mice with the HPV 16 L1/L2-mLTK63 cVLPs could induce higher titers of HPV 16-specific long-lasting neutralizing serum antibodies and stronger splenocyte proliferation, Th1- and Th2-type cytokines and CD4(+) Th responses than HPV 16 L1/L2 VLPs. The results suggested that it is possible to enhance the immunogenicity of HPV VLP vaccines via a strategy of fusing effective adjuvant protein into cVLPs.  相似文献   

7.
Wu WH  Gersch E  Kwak K  Jagu S  Karanam B  Huh WK  Garcea RL  Roden RB 《PloS one》2011,6(11):e27141
Capsomers were produced in bacteria as glutathione-S-transferase (GST) fusion proteins with human papillomavirus type 16 L1 lacking the first nine and final 29 residues (GST-HPV16L1Δ) alone or linked with residues 13–47 of HPV18, HPV31 and HPV45 L2 in tandem (GST-HPV16L1Δ-L2x3). Subcutaneous immunization of mice with GST-HPV16L1Δ or GST-HPV16L1Δ-L2x3 in alum and monophosphoryl lipid A induced similarly high titers of HPV16 neutralizing antibodies. GST-HPV16L1Δ-L2x3 also elicited moderate L2-specific antibody titers. Intravaginal challenge studies showed that immunization of mice with GST-HPV16 L1Δ or GST-HPV16L1Δ-L2x3 capsomers, like Cervarix®, provided complete protection against HPV16. Conversely, vaccination with GST-HPV16 L1Δ capsomers failed to protect against HPV18 challenge, whereas mice immunized with either GST-HPV16L1Δ-L2x3 capsomers or Cervarix® were each completely protected. Thus, while the L2-specific response was moderate, it did not interfere with immunity to L1 in the context of GST-HPV16L1Δ-L2x3 and is sufficient to mediate L2-dependent protection against an experimental vaginal challenge with HPV18.  相似文献   

8.
Current human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs)-based vaccines in clinic induce strong HPV type-specific neutralizing antibody responses. To develop pan-HPV vaccines, here, we show that the fusion protein E3R4 consisting of three repeats of HPV16 L2 aa 17–36 epitope (E3) and a modified human IgG1 Fc scaffold (R4) induces cross-neutralizing antibodies and protective immunity against divergent HPV types. E3R4 was expressed as a secreted protein in baculovirus expression system and could be simply purified by one step Protein A affinity chromatography with the purity above 90%. Vaccination of E3R4 formulated with Freunds adjuvant not only induced cross-neutralizing antibodies against HPV pseudovirus types 16, 18, 45, 52, 58, 6, 11 and 5 in mice, but also protected mice against vaginal challenges with HPV pseudovirus types 16, 45, 52, 58, 11 and 5 for at least eleven months after the first immunization. Moreover, vaccination of E3R4 formulated with FDA approved adjuvant alum plus monophosphoryl lipid A also induced cross-neutralizing antibodies against HPV types 16, 18 and 6 in rabbits. Thus, our results demonstrate that delivery of L2 antigen as a modified Fc-fusion protein may facilitate pan-HPV vaccine development.  相似文献   

9.
Human papillomaviruses (HPVs) are known etiologic agents of cervical cancer. Vaccines that contain virus-like particles (VLPs) made of L1 capsid protein from several high risk HPV types have proven to be effective against HPV infections. Raising high levels of neutralizing antibodies against each HPV type is believed to be the primary mechanism of protection, gained by vaccination. Antibodies elicited by a particular HPV type are highly specific to that particular HPV type and show little or no cross-reactivity between HPV types. With an intention to understand the interplay between the L1 structure of different HPV types and the type specificity of neutralizing antibodies, we have prepared the L1 pentamers of four different HPV types, HPV11, HPV16, HPV18, and HPV35. The pentamers only bind the type-specific neutralizing monoclonal antibodies (NmAbs) that are raised against the VLP of the corresponding HPV type, implying that the surface loop structures of the pentamers from each type are distinctive and functionally active as VLPs in terms of antibody binding. We have determined the crystal structures of all four L1 pentamers, and their comparisons revealed characteristic conformational differences of the surface loops that contain the known epitopes for the NmAbs. On the basis of these distinct surface loop structures, we have provided a molecular explanation for the type specificity of NmAbs against HPV infection.  相似文献   

10.
The human papillomavirus (HPV) minor capsid protein L2 is a promising candidate for a broadly protective HPV vaccine yet the titers obtained in most experimental systems are rather low. Here we examine the potential of empty AAV2 particles (AAVLPs), assembled from VP3 alone, for display of L2 epitopes to enhance their immunogenicity. Insertion of a neutralizing epitope (amino acids 17-36) from L2 of HPV16 and HPV31 into VP3 at positions 587 and 453, respectively, permitted assembly into empty AAV particles (AAVLP(HPV16/31L2)). Intramuscularly vaccination of mice and rabbits with AAVLP(HPV16/31L2)s in montanide adjuvant, induced high titers of HPV16 L2 antibodies as measured by ELISA. Sera obtained from animals vaccinated with the AAVLP(HPV16/31L2)s neutralized infections with several HPV types in a pseudovirion infection assay. Lyophilized AAVLP(HPV16/31L2) particles retained their immunogenicity upon reconstitution. Interestingly, vaccination of animals that were pre-immunized with AAV2--simulating the high prevalence of AAV2 antibodies in the population--even increased cross neutralization against HPV31, 45 and 58 types. Finally, passive transfer of rabbit antisera directed against AAVLP(HPV16/31L2)s protected na?ve mice from vaginal challenge with HPV16 pseudovirions. In conclusion, AAVLP(HPV16/31L2) particles have the potential as a broadly protective vaccine candidate regardless of prior exposure to AAV.  相似文献   

11.
Since several years it has been accepted that persistent infection with certain (so called-high risk: HR) types of Human papillomaviruses (HPV) represents a strong risk factor for cervical cancer. The most frequent HR HPV types 16 and 18 account for about 70% of this tumour, which is the second most frequent malignancy in women worldwide. Several studies in animal papillomavirus models revealed that protection against infection is conferred by neutralizing antibodies directed against conformational epitopes of the major structural protein L1. Such antibodies can most efficiently be induced by immunization with virus-like particles (VLP) that assemble spontaneously following expression of L1 in recombinant vectors. Large-scale production of HPV 16 and 18 VLPs proved to be successful facilitating, a few years ago, first clinical trials on safety and immunogenicity. In the meantime more than 25,000 women have been included into several efficacy trials which demonstrated protection against persistent infection with HPV 16 and 18 and against the development of precursor lesions to cervical cancer. Although the ultimate proof of success, i.e. reduction of cancer incidence still requires the immunization of large populations and many years of follow-up, the existing data are so persuasive that the responsible agencies in several countries permitted the licensing of the first HPV vaccine in 2006. Several questions such as the duration of protection, the need development of for post-exposure vaccination strategies and availability of such vaccine in low-budget countries are open and will be discussed.  相似文献   

12.
Studies of virus neutralization by antibody are a prerequisite for development of a prophylactic vaccine strategy against human papillomaviruses (HPVs). Using HPV16 and -6 pseudovirions capable of inducing beta-galactosidase in infected monkey COS-1 cells, we examined the neutralizing activity of mouse monoclonal antibodies (MAbs) that recognize surface epitopes in HPV16 minor capsid protein L2. Two MAbs binding to a synthetic peptide with the HPV16 L2 sequence of amino acids (aa) 108 to 120 were found to inhibit pseudoinfections with HPV16 as well as HPV6. Antisera raised by immunizing BALB/c mice with the synthetic peptide had a cross-neutralizing activity similar to that of the MAb. The data indicate that HPV16 and -6 have a common cross-neutralization epitope (located within aa 108 to 120 of L2 in HPV16), suggesting that this epitope may be shared by other genital HPVs.  相似文献   

13.
为了评价重组大肠杆菌表达的HPV16L1蛋白和重组腺病毒表达的HPV16L1 VLP两种抗原在检测宫颈癌抗 16L1或VLP抗体及在宫颈癌血清学诊断意义上的差别 ,应用PCR技术从宫颈癌组织的DNA中扩增出全长15 35bp的HPV16L1基因片段 ,克隆至 pUC18 T载体中 ,进行DNA测序鉴定。然后 ,将HPV16L1基因克隆至pGEX 2T表达载体中 ,并诱导表达HPV16L1融合蛋白 ,分子量为 83kD ,能被HPV16L1单克隆抗体所识别。经GST柱层析法纯化后 ,与重组腺病毒表达的HPV16L1 VLP分别经酶联免疫吸附 (ELISA)法检测 12份宫颈癌患者和 35份献血员血清。 12例宫颈癌血清标本中 ,抗HPV16L1蛋白的抗体阳性率为 7例 (占 5 8.3% ) ;抗HPV16L1 VLP的抗体阳性率为 8例 (占 6 6 .7% )。经大肠杆菌表达的重组抗原HPV16L1检测为HPV16抗体IgG( )的 7份患者血清 ,利用HPV16L1 VLP试剂盒检测均阳性 ;经大肠杆菌表达的重组抗原检测为HPV16抗体IgG( )的 5份患者血清 ,利用HPV16L1 VLP试剂盒检测有 1份阳性。两者对HPV16抗体的阳性检出率并无显著差异 (P >0 .0 5 )。本实验结果说明HPV16与宫颈癌高度相关 ,利用大肠杆菌表达的重组抗原HPV16L1和HPV16L1 VLP重组抗原检测抗体的敏感性并不受影响。利用重组抗原HPV16L1对宫颈癌的抗体进行定性、定量分析有助于该疾病  相似文献   

14.
An expression system for the synthesis of early antigenic proteins HPV16 E2, HPV16 E6, and HPV16 E7 of high-risk papillomavirus based on transgenic tomato fruits was developed. It is planned to use the early antigenic proteins synthesized to create a therapeutic vaccine against cervical cancer.  相似文献   

15.
Previously, we developed a non-replicating recombinant baculovirus coated with human endogenous retrovirus envelope protein (AcHERV) for enhanced cellular delivery of human papillomavirus (HPV) 16L1 DNA. Here, we report the immunogenicity of an AcHERV-based multivalent HPV nanovaccine in which the L1 segments of HPV 16, 18, and 58 genes were inserted into a single baculovirus genome of AcHERV. To test whether gene expression levels were affected by the order of HPV L1 gene insertion, we compared the efficacy of bivalent AcHERV vaccines with the HPV 16L1 gene inserted ahead of the 18L1 gene (AcHERV-HP16/18L1) with that of AcHERV with the HPV 18L1 gene inserted ahead of the 16L1 gene (AcHERV-HP18/16L1). Regardless of the order, the bivalent AcHERV DNA vaccines retained the immunogenicity of monovalent AcHERV-HP16L1 and AcHERV-HP18L1 DNA vaccines. Moreover, the immunogenicity of bivalent AcHERV-HP16/18L1 was not significantly different from that of AcHERV-HP18/16L1. In challenge tests, both bivalent vaccines provided complete protection against HPV 16 and 18 pseudotype viruses. Extending these results, we found that a trivalent AcHERV nanovaccine encoding HPV 16L1, 18L1, and 58L1 genes (AcHERV-HP16/18/58L1) provided high levels of humoral and cellular immunogenicity against all three subtypes. Moreover, mice immunized with the trivalent AcHERV-based nanovaccine were protected from challenge with HPV 16, 18, and 58 pseudotype viruses. These results suggest that trivalent AcHERV-HPV16/18/58L1 could serve as a potential prophylactic baculoviral nanovaccine against concurrent infection with HPV 16, 18, and 58.  相似文献   

16.
The mechanisms of human papillomavirus (HPV) neutralization by antibodies are incompletely understood. We have used HPV16 pseudovirus infection of HaCaT cells to analyze how several neutralizing monoclonal antibodies (MAbs) generated against HPV16 L1 interfere with the process of keratinocyte infection. HPV16 capsids normally bind to both the cell surface and extracellular matrix (ECM) of HaCaT cells. Surprisingly, two strongly neutralizing MAbs, V5 and E70, did not prevent attachment of capsids to the cell surface. However, they did block association with the ECM and prevented internalization of cell surface-bound capsids. In contrast, MAb U4 prevented binding to the cell surface but not to the ECM. The epitope recognized by U4 was inaccessible when virions were bound to the cell surface but became accessible after endocytosis, presumably coinciding with receptor detachment. Treatment of capsids with heparin, which is known to interfere with binding to cell surface heparan sulfate proteoglycans (HSPGs), also resulted in HPV16 localization to the ECM. These results suggest that the U4 epitope on the intercapsomeric C-terminal arm is likely to encompass the critical HSPG interaction residues for HPV16, while the V5 and E70 epitopes at the apex of the capsomer overlap the ECM-binding sites. We conclude that neutralizing antibodies can inhibit HPV infection by multiple distinct mechanisms, and understanding these mechanisms can add insight to the HPV entry processes.  相似文献   

17.
We have previously reported that the most common human serum immunoglobulin G antibody reactivities to human papillomavirus type 16 and type 18 (HPV16 and HPV18)-encoded proteins are directed against the minor capsid proteins (HPV16 L2 and HPV18 L2) and to the E7 protein of HPV16 (S. A. Jenison, X.-P. Yu, J. M. Valentine, L. A. Koutsky, A. E. Christiansen, A. M. Beckmann, and D. A. Galloway, J. Infect. Dis. 162:60-69, 1990). In this study, the antibody-reactive segments of the HPV16 E7, HPV16 L2, and HPV18 L2 polypeptides were mapped by using nested sets of deleted recombinant proteins. A single major immunoreactive region was identified in the HPV16 E7 polypeptide between amino acids (aa) 21 and 34 (DLYCYE-QLNDSSEE). In contrast, three distinct immunoreactive regions of the HPV16 L2 polypeptide were present in the segment between aa149 and aa204, and three distinct immunoreactive regions of the HPV18 L2 polypeptide were present in the segment between aa110 and aa211. With the exception of one serum sample, serum immunoglobulin G antibodies which reacted with HPV16 L2 polypeptides or with HPV18 L2 polypeptides were not cross-reactive.  相似文献   

18.

Background

Current human papillomavirus (HPV) vaccines that are based on virus-like particles (VLPs) of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin.

Methodology/Principal Findings

L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV) encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV.

Conclusion/Significance

VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.  相似文献   

19.
人乳头瘤病毒16型假病毒中和实验的建立和初步应用   总被引:4,自引:0,他引:4  
探讨了应用多质粒磷酸钙共转染方法在293FT细胞中生产HPV16(human papillomavirus type 16)假病毒。蛋白印迹检测显示在转染后细胞的裂解上清中具有很好的L1蛋白活性,通过透射电镜可观察到形态与天然病毒粒子相似的假病毒颗粒。对293FT细胞的感染实验显示,该假病毒可有效将EGFP报告质粒导入靶细胞中进行表达,经测定其滴度约为2×107TU/mL。通过与4株HPV16对照单抗的中和实验证明该假病毒可有效应用于中和实验。应用该方法从18株抗HPV16L1的单克隆抗体中鉴定获得了2株中和单抗3D10、PD1。所建立的HPV16假病毒生产和中和实验方法具有快速高效、低成本和易于检测的优点,适于进行较大规模应用,为快速准确鉴定HPV16中和单抗和候选疫苗的免疫保护效果提供了有效手段。  相似文献   

20.
人乳头瘤病毒(Human papillomavirus,HPV)是一类无包膜的小DNA病毒,其衣壳蛋白由主要衣壳蛋白L1和次要衣壳蛋白L2组成,持续感染HPV将引起宫颈癌和尖锐湿疣等多种疾病。HPV衣壳蛋白L1和L2中分布着大量中和表位,并具有较强的免疫原性,HPV疫苗可诱导机体产生高滴度的中和抗体并阻碍病毒感染,进而预防宫颈癌等疾病的发生。分析阐述HPV衣壳蛋白中和表位及抗体的中和作用机理,有助于阐明HPV疫苗预防病毒感染的作用机制,为今后设计新一代保护范围更广的HPV疫苗奠定良好的基础。本文就HPV衣壳蛋白中和表位及抗体的中和作用机制进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号