首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine whether diosgenin suppresses cholesterol absorption in rats, and to examine relevant changes in cholesterol and bile acid metabolism. Diosgenin fed with the diet for 1 week inhibited cholesterol absorption as determined by the serum isotope ratio technique, as well as by measuring in the feces the amount of unabsorbed radioactivity from orally administered [3H]cholesterol. In addition, diosgenin suppressed the serum and liver uptake of radioactivity from co-administered [3H]cholesterol as well as the accumulation of liver cholesterol in the cholesterol-fed rat; diosgenin was substantially more active than cholestyramine or beta-sitosterol. In vitro, diosgenin had no effect on the activity of rat pancreatic esterase. Diosgenin decreased the elevated cholesterol in serum LDL and elevated cholesterol in the HDL fraction of cholesterol-fed rats; diosgenin had no effect on serum cholesterol in normocholesterolemic rats. In contrast to cholestyramine, diosgenin markedly increased neutral sterol excretion without altering bile acid excretion; in vitro, diosgenin had no effect on bile acid binding. Diosgenin treatment increased hepatic and intestinal cholesterol synthesis as well as the activity of hepatic HMG CoA reductase. This was accompanied by increased biliary concentration of cholesterol, but not of bile acids. Diosgenin had no effect on cholesterol synthesis when added to normal rat liver homogenates. It was concluded that diosgenin interferes with the absorption of cholesterol of both exogenous and endogenous origin; such interference is accompanied by derepressed, i.e., increased, rates of hepatic and intestinal cholesterol synthesis. The increased unabsorbed cholesterol together with enhanced secretion of cholesterol into bile resulted in increased excretion of neutral sterols without affecting the biliary and fecal excretion of bile acids.  相似文献   

2.
To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of β-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of β-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, β-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, β-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine–glycine conjugation, β-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by ?75% and ?44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with β-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. β-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% β-cyclodextrin and 19-times with 1% cholestyramine compared to control. β-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of β-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol excretion is most likely the primary mechanism responsible for the lipid-lowering action of β-cyclodextrin. In contrast, other mechanisms involving the alterations in the biliary bile acid profile or repressed hepatic lipogenesis, e.g., VLDL production, appear to be involved in the hypolipidemic effect of resistant starch.  相似文献   

3.
The scavenger receptor class B type I (SR-BI), which is expressed in the liver and intestine, plays a critical role in cholesterol metabolism in rodents. While hepatic SR-BI expression controls high density lipoprotein (HDL) cholesterol metabolism, intestinal SR-BI has been proposed to facilitate cholesterol absorption. To evaluate further the relevance of SR-BI in the enterohepatic circulation of cholesterol and bile salts, we studied biliary lipid secretion, hepatic sterol content and synthesis, bile acid metabolism, fecal neutral sterol excretion, and intestinal cholesterol absorption in SR-BI knockout mice. SR-BI deficiency selectively impaired biliary cholesterol secretion, without concomitant changes in either biliary bile acid or phospholipid secretion. Hepatic total and unesterified cholesterol contents were slightly increased in SR-BI-deficient mice, while sterol synthesis was not significantly changed. Bile acid pool size and composition, as well as fecal bile acid excretion, were not altered in SR-BI knockout mice. Intestinal cholesterol absorption was somewhat increased and fecal sterol excretion was slightly decreased in SR-BI knockout mice relative to controls. These findings establish the critical role of hepatic SR-BI expression in selectively controlling the utilization of HDL cholesterol for biliary secretion. In contrast, SR-BI expression is not essential for intestinal cholesterol absorption.  相似文献   

4.
Beta-Cyclodextrin (BCD), a cyclic oligosaccharide that binds cholesterol and bile acids in vitro, has been previously shown to be an effective plasma cholesterol lowering agent in hamsters and domestic pigs. This study examined the effects of BCD as compared with cholestyramine on cholesterol and bile acid metabolism in the LPN hamster model model for cholesterol gallstones. The incidence of cholesterol gallstones was 65% in LPN hamsters fed the lithogenic diet, but decreased linearly with increasing amounts of BCD in the diet to be nil at a dose of 10% BCD. In gallbladder bile, cholesterol, phospholipid and chenodeoxycholate concentrations, hydrophobic and lithogenic indices were all significantly decreased by 10% BCD. Increases in bile acid synthesis (+110%), sterol 27-hydroxylase activity (+106%), and biliary cholate secretion (+140%) were also observed, whereas the biliary secretion of chenodeoxycholate decreased (-43%). The fecal output of chenodeoxycholate and cholate (plus derivatives) was increased by +147 and +64%, respectively, suggesting that BCD reduced the chenodeoxycholate intestinal absorption preferentially. Dietary cholestyramine decreased biliary bile acid concentration and secretion, but dramatically increased the fecal excretion of chenodeoxycholate and cholate plus their derivatives (+328 and +1940%, respectively). In contrast to BCD, the resin increased the lithogenic index in bile, induced black gallstones in 34% of hamsters, and stimulated markedly the activities of HMG-CoA reductase (+670%), sterol 27-hydroxylase (+310%), and cholesterol 7alpha-hydroxylase (+390%). Thus, beta-cyclodextrin (BCD) prevented cholesterol gallstone formation by decreasing specifically the reabsorption of chenodeoxycholate, stimulating its biosynthesis and favoring its fecal elimination. BCD had a milder effect on lipid metabolism than cholestyramine and does not predispose animals to black gallstones as cholestyramine does in this animal model.  相似文献   

5.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

6.
The SHR/N-corpulent rat is a new genetically obese strain that exhibits both insulin-independent diabetes and hyperlipidemia. The present studies were undertaken to characterize various parameters of cholesterol metabolism in this model. At 11 weeks of age, the obese animals had markedly elevated plasma cholesterol, triglyceride, glucose, and insulin concentrations and elevated hepatic triglyceride concentrations compared to their lean littermates. The additional cholesterol in plasma was carried in the fractions of density less than 1.006, 1.020-1.055, 1.055-1.095, and 1.095-1.21 g/ml. In the obese rats the level of free cholesterol in the liver was decreased significantly while that of cholesteryl ester showed little change. Hepatic sterol synthesis was markedly suppressed in the obese animals. However, the rate of sterol synthesis in the small intestine and other extrahepatic tissues generally remained unchanged. Although hepatic synthesis was suppressed, whole animal sterol synthesis in the obese rats was similar to that in the lean controls. This resulted because, in the obese animals, not only was the reduced rate of hepatic synthesis partly balanced by a greater than 70% increase in liver mass, but the mass of the small intestine and adipose tissue was also increased more than 30% and 4-fold, respectively, thereby making these tissues quantitatively more important sites of sterol synthesis. When obese rats were pair-fed to the intake of their lean littermates for 10 weeks, there was only a modest reduction in body weight and plasma cholesterol concentration, and the rate of hepatic sterol synthesis remained very low. The suppression of synthesis in the liver also persisted when the obese rats were fed surfomer, a drug that specifically blocks cholesterol absorption. In contrast, feeding cholestyramine restored the rate of hepatic sterol synthesis to that found in lean animals. Bile acid pool size in the obese males and females was 2.5-fold greater than in their lean controls. The suppression of hepatic sterol synthesis in this model may be due to a change in the entero-hepatic circulation of bile acids arising from an expanded pool or, alternatively, it may represent a compensatory response to overproduction of sterol and its precursors in the intestinal and adipose compartments.  相似文献   

7.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   

8.
This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n = 9) were fed experimental diets: normal diet, normal diet+LAB (2 x 10(6) CFU/day), hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet + LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL + IDL + LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol 7 alpha-hydroxylase expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.  相似文献   

9.
The objective of this study was to determine whether a grape seed procyanidin extract (GSPE) exerts a triglyceride-lowering effect in a hyperlipidemic state using the fructose-fed rat model and to elucidate the underlying molecular mechanisms. Rats were fed either a starch control diet or a diet containing 65% fructose for 8 weeks to induce hypertriglyceridemia. During the 9th week of the study, rats were maintained on their respective diet and administered vehicle or GSPE via oral gavage for 7 days. Fructose increased serum triglyceride levels by 171% after 9 weeks, compared to control, while GSPE administration attenuated this effect, resulting in a 41% decrease. GSPE inhibited hepatic lipogenesis via down-regulation of sterol regulatory element binding protein 1c and stearoyl-CoA desaturase 1 in the fructose-fed animals. GSPE increased fecal bile acid and total lipid excretion, decreased serum bile acid levels and increased the expression of genes involved in cholesterol synthesis. However, bile acid biosynthetic gene expression was not increased in the presence of GSPE and fructose. Serum cholesterol levels remained constant, while hepatic cholesterol levels decreased. GSPE did not modulate expression of genes responsible for esterification or biliary export of the newly synthesized cholesterol, but did increase fecal cholesterol excretion, suggesting that in the presence of GSPE and fructose, the liver may secrete more free cholesterol into the plasma which may then be shunted to the proximal small intestine for direct basolateral to apical secretion and subsequent fecal excretion. Our results demonstrate that GSPE effectively lowers serum triglyceride levels in fructose-fed rats after one week administration. This study provides novel insight into the mechanistic actions of GSPE in treating hypertriglyceridemia and demonstrates that it targets hepatic de novo lipogenesis, bile acid homeostasis and non-biliary cholesterol excretion as important mechanisms for reducing hypertriglyceridemia and hepatic lipid accumulation in the presence of fructose.  相似文献   

10.
Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.  相似文献   

11.
Studies to determine the effects of pre-natal interventions on maternal and fetal cholesterol homeostasis were carried out in the guinea pig. Guinea pig dams were fed either non-purified guinea pig diet or diet supplemented with either 1.1% of the bile acid binding resin cholestyramine or 0.25% cholesterol. Whole body rates of endogenous cholesterol synthesis were determined by quantitation of [3H]water incorporation into digitonin precipitable sterols in non-pregnant animals and at 40 and 60 days of gestation in the dam and fetus. Maternal hepatic cholesterol synthesis was reduced 87% by dietary cholesterol and was increased 3.5-fold with cholestyramine feeding. Fetal hepatic and peripheral tissue cholesterol synthesis rates peaked at 40 days gestation when peripheral tissue cholesterol synthesis was 5.7-fold higher and hepatic synthesis 6.2-fold greater than the near adult levels observed at 60 days. Cholesterol synthesis in the fetus was relatively insensitive to dietary manipulations; however, maternal cholestyramine treatment did result in a 1.4-fold increase in fetal carcass cholesterol synthesis at 60 days gestation. These data demonstrate that maternal cholesterogenic systems maintain responsiveness to dietary regulation during pregnancy; whereas fetal cholesterol homeostasis is relatively insensitive to dietary cholesterol throughout gestation yet may respond to induction by maternal cholestyramine treatment during the late gestation period.  相似文献   

12.
Dietary components impact metabolism early in life. Some of the diet-induced effects are long lasting and can lead to various adult-based diseases. In the current studies, we examined the short-term effects of dietary cholesterol on neonatal hepatic sterol metabolism and the long-term effects that those early-life diets had on sterol metabolism in adulthood. Neonatal hamsters began consuming solid food as a supplement to milk by 5 days of age; diets contained 0 or 2% added cholesterol (wt/wt). By 10 days of age, plasma and liver cholesterol concentrations were 3.2- and 2.5-fold greater, respectively, in the neonates fed cholesterol. Hepatic sterol synthesis rates were suppressed 65% in cholesterol-fed neonates compared with control neonates. By 20 days of age, plasma and liver cholesterol concentrations were still greater and sterol synthesis rates were now suppressed maximally in neonates fed cholesterol compared with control neonates. The expression level of an apolipoprotein B-containing lipoprotein receptor (low-density lipoprotein receptor-related protein) was greater and the mature form of the sterol regulatory element-binding protein-2 was similar in livers of 20-day-old control neonates compared with control neonates at 10 days of age. To test whether the change in sterol balance in the neonatal period had a lasting effect on hepatic sterol metabolism, all animals were weaned on a low-cholesterol diet. At 70 days of age, hepatic sterol synthesis rates, plasma lipoprotein and liver cholesterol concentrations, and bile acid pool sizes and compositions were measured. Sterol balance in the adults was similar between animals fed either diet early in life, as demonstrated by a lack of difference in any parameter measured. Thus, even though dietary cholesterol suppressed hepatic sterol synthesis rates dramatically in the neonatal hamster, the change has little impact on sterol balance later in life.  相似文献   

13.
Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8   总被引:3,自引:0,他引:3  
The ATP binding cassette transporters ABCG5 (G5) and ABCG8 (G8) limit the accumulation of neutral sterols by restricting sterol uptake from the intestine and promoting sterol excretion into bile. Humans and mice lacking G5 and G8 (G5G8-/-) accumulate plant sterols in the blood and tissues. However, despite impaired biliary cholesterol secretion, plasma and liver cholesterol levels are lower in G5G8-/- mice than in wild-type littermates. To determine whether the observed changes in hepatic sterol metabolism were a direct result of decreased biliary sterol secretion or a metabolic consequence of the accumulation of dietary noncholesterol sterols, we treated G5G8-/- mice with ezetimibe, a drug that reduces the absorption of both plant- and animal-derived sterols. Ezetimibe feeding for 1 month sharply decreased sterol absorption and plasma levels of sitosterol and campesterol but increased cholesterol in both the plasma (from 60.4 to 75.2 mg/dl) and the liver (from 1.1 to 1.87 mg/g) of the ezetimibe-treated G5G8-/- mice. Paradoxically, the increase in hepatic cholesterol was associated with an increase in mRNA levels of HMG-CoA reductase and synthase. Together, these results indicate that pharmacological blockade of sterol absorption can ameliorate the deleterious metabolic effects of plant sterols even in the absence of G5 and G8.  相似文献   

14.
Bile acids in the rat: studies in experimental occlusion of the bile duct   总被引:2,自引:0,他引:2  
Bile acids in the plasma, urine, and small intestine of adult male rats with occluded bile ducts have been studied using a method of high specificity for their determination. After bile duct ligation cholic acid rapidly accumulates in the plasma for 8 hr, remains high for a further 8 hr, and subsequently diminishes; bile acids disappear from the small intestine. During the first 12 hr after bile duct ligation the excretion of trihydroxy acids in the urine was 10 times that of the dihydroxy acids. Subsequently the two excretion rates became equal. Because bile acids have been implicated in the etiology of hepatic damage following bile duct ligation, studies have been made of the effect on the liver of removing (with cholestyramine) and supplementing (with cholic acid) the intestinal bile acid pool. The addition of cholestyramine to the stock diet prevented the rise in trihydroxy bile acids after bile duct ligation, but did not prevent the development of histological abnormalities in the liver. Supplementing the diet with cholic acid raised the plasma cholic acid levels but had little effect on the hepatic histological findings.  相似文献   

15.
Intestinal cholesterol absorption is a major determinant of plasma low density lipoprotein-cholesterol (LDL-C) concentrations. Ezetimibe (SCH 58235) and its analogs SCH 48461 and SCH 58053 are novel potent inhibitors of cholesterol absorption whose mechanism of action is unknown. These studies investigated the effect of SCH 58053 on cholesterol metabolism in female 129/Sv mice. In mice fed a low cholesterol rodent diet containing SCH 58053, cholesterol absorption was reduced by 46% and fecal neutral sterol excretion was increased 67%, but biliary lipid composition and bile acid synthesis, pool size, and pool composition were unchanged. When the dietary cholesterol content was increased either 10- or 50-fold, those animals given SCH 58053 manifested lower hepatic and biliary cholesterol concentrations than did their untreated controls. Cholesterol feeding increased the relative mRNA level for adenosine triphosphate-binding cassette transporter A1 (ABCA1), ABC transporter G5 (ABCG5), and ABC transporter G8 (ABCG8) in the jejunum, and of ABCG5 and ABCG8 in the liver, but the magnitude of this increase was generally less if the mice were given SCH 58053. We conclude that the inhibition of cholesterol absorption effected by this new class of agents is not mediated via changes in either the size or composition of the intestinal bile acid pool, or the level of mRNA expression of proteins that facilitate cholesterol efflux from the enterocyte, but rather may involve disruption of the uptake of luminal sterol across the microvillus membrane.  相似文献   

16.
Nutrient and drug effects on cholesterol metabolism in the laying hen   总被引:3,自引:0,他引:3  
The laying hen is a highly dynamic model for studies of cholesterol metabolism. Cholesterol biosynthesis takes place primarily in the liver where it is regulated by both diet and drugs. Ovarian cholesterol biosynthesis follows a pattern different from that in liver and is not influenced by dietary fat or cholesterol. The hen responds to high levels of dietary polyunsaturated fat by increasing cholesterol biosynthesis, egg cholesterol deposition, and fecal bile acid excretion. Dietary cholesterol curtails liver cholesterol biosynthesis and may or may not result in increased egg cholesterol deposition and/or increased fecal steroid excretion depending on the level of cholesterol intake. Dietary plant sterols and fiber may moderate egg cholesterol deposition but the conditions under which this takes place are not well defined. D-Thyroxin reduces blood cholesterol, increases blood sterol turnover, and increases egg cholesterol concentration. Triparanol and azasterols prevent desmosterol conversion to cholesterol with resultant appearance of both sterols in blood and eggs. Probucol moderates egg cholesterol deposition by reducing synthesis and/or transfer of the sterol to the egg. Implications for the use of the hen in cholesterol metabolism studies are discussed.  相似文献   

17.
18.
19.
Aging is one of major risk factors for developing hypercholesterolemia. To elucidate the cholesterol-lowering mechanism exerted by rice protein (RP), the effects on hepatic cholesterol outputs and cholesterol metabolism related enzymes were investigated in adult rats, which were fed by casein (CAS) and RP without cholesterol in diets. After 2 weeks of feeding, the significant cholesterol-lowering effect was observed in adult rats fed by RP compared to CAS. The hepatic total- and VLDL-cholesterol secretions into circulation were significantly depressed in RP group, whereas biliary outputs of bile acids and cholesterol were effectively stimulated by RP-feeding, causing an increase in fecal sterol excretion compared to CAS. As a result, the apparent cholesterol absorption was significantly inhibited by RP. RP-feeding significantly increased the activity and gene expression of cholesterol 7α-hydroxylase, whereas acyl-CoA:cholesterol acyltransferase-2 activity and gene expression were significantly decreased by RP as compared with CAS. Neither activity nor gene expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase of RP did differ from CAS in the liver. The present study demonstrates that rice protein can prevent hypercholesterolemia through modifying hepatic cholesterol metabolism under cholesterol-free dietary condition. The findings suggest that hypocholesterolemic action induced by rice protein is attributed in part to the inhibition of cholesterol absorption during the adult period.  相似文献   

20.
Baboons with high and low lipemic responses to dietary lipids differ in intestinal cholesterol absorption and hepatic cholesterol metabolism. ATP-binding cassette (ABC) transporters play an important role in cholesterol absorption and hepatic cholesterol metabolism. Using frozen tissues from high- and low-responding baboons maintained on the cholesterol and fat-enriched diet, we determined the relative expression of ABCA1, ABCG5, ABCG8, and 27-hydroxylase genes in the liver and intestine using TaqMan real-time polymerase chain reaction. There was no consistent difference in the expression of ABC-transporters and 27-hydroxylase in the intestine between high- and low-responding baboons. However, hepatic expression of sterol 27-hydroxylase, ABCG5, and ABCG8 was higher in low-responding baboons than in high-responding baboons. There was also a significant correlation between the expression of sterol 27-hydroxylase and ABCG5, and ABCG8 in both the liver and the intestine. These results suggest that differences in hepatic lipid metabolism but not in cholesterol absorption between high- and low-responding baboons observed previously may be mediated by the differences in the expression levels of 27-hydroxylase, ABCG5, and ABCG8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号