首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A neural network model is considered which is designed as a system of phase oscillators and contains the central oscillator and peripheral oscillators which interact via the central oscillator. The regime of partial synchronization was studied when current frequencies of the central oscillator and one group of peripheral oscillators are near to each other while current frequencies of other peripheral oscillators are far from being synchronized with the central oscillator. Approximation formulas for the average frequency of the central oscillator in the regime of partial synchronization are derived, and results of computation experiments are presented which characterize the accuracy of the approximation.  相似文献   

3.
Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.  相似文献   

4.
An object extraction problem based on the Gibbs Random Field model is discussed. The Maximum a'posteriori probability (MAP) estimate of a scene based on a noise-corrupted realization is found to be computationally exponential in nature. A neural network, which is a modified version of that of Hopfield, is suggested for solving the problem. A single neuron is assigned to every pixel. Each neuron is supposed to be connected only to all of its nearest neighbours. The energy function of the network is designed in such a way that its minimum value corresponds to the MAP estimate of the scene. The dynamics of the network are described. A possible hardware realization of a neuron is also suggested. The technique is implemented on a set of noisy images and found to be highly robust and immune to noise.  相似文献   

5.
This paper describes an experimental investigation concerning the use of neural networks to achieve the non-linear control of a continuous stirred tank fermenter. The influent dilution rate and the substrate concentration have been selected as control variables. The backpropagation learning algorithm has been used for both off-line and on-line identification of the inverse model which provides the control action. Experimental results show the performance and the implementation simplicity of this control approach.  相似文献   

6.
In this paper we propose the use of neural interference as the origin of quantum-like effects in the brain. We do so by using a neural oscillator model consistent with neurophysiological data. The model used was shown elsewhere to reproduce well the predictions of behavioral stimulus-response theory. The quantum-like effects are brought about by the spreading activation of incompatible oscillators, leading to an interference-like effect mediated by inhibitory and excitatory synapses.  相似文献   

7.
Spontaneous synchronization of coupled circadian oscillators   总被引:1,自引:0,他引:1       下载免费PDF全文
In mammals, the circadian pacemaker, which controls daily rhythms, is located in the suprachiasmatic nucleus (SCN). Circadian oscillations are generated in individual SCN neurons by a molecular regulatory network. Cells oscillate with periods ranging from 20 to 28 h, but at the tissue level, SCN neurons display significant synchrony, suggesting a robust intercellular coupling in which neurotransmitters are assumed to play a crucial role. We present a dynamical model for the coupling of a population of circadian oscillators in the SCN. The cellular oscillator, a three-variable model, describes the core negative feedback loop of the circadian clock. The coupling mechanism is incorporated through the global level of neurotransmitter concentration. Global coupling is efficient to synchronize a population of 10,000 cells. Synchronized cells can be entrained by a 24-h light-dark cycle. Simulations of the interaction between two populations representing two regions of the SCN show that the driven population can be phase-leading. Experimentally testable predictions are: 1), phases of individual cells are governed by their intrinsic periods; and 2), efficient synchronization is achieved when the average neurotransmitter concentration would dampen individual oscillators. However, due to the global neurotransmitter oscillation, cells are effectively synchronized.  相似文献   

8.
Control of a continuous bioreactor based on a artificial neural network (ANN) model is carried out theoretically. The ANN model is identified, from input-output data of a bioreactor, using a three-layer feedforward network trained by a back propagation algorithm. The performance of the controller designed on the ANN model is compared with that of a conventional PI controller.  相似文献   

9.
Existing neural network models are capable of tracking linear trajectories of moving visual objects. This paper describes an additional neural mechanism, disfacilitation, that enhances the ability of a visual system to track curved trajectories. The added mechanism combines information about an object's trajectory with information about changes in the object's trajectory, to improve the estimates for the object's next probable location. Computational simulations are presented that show how the neural mechanism can learn to track the speed of objects and how the network operates to predict the trajectories of accelerating and decelerating objects.  相似文献   

10.
Blood cell identification using a simple neural network   总被引:1,自引:0,他引:1  
Classification of blood cell types can be time consuming and susceptible to error due to the different morphological features of the cells. This paper presents a blood cell identification system that simulates a human visual inspection and identification of the three blood cell types. The proposed system uses global pattern averaging to extract cell features, and a neural network to classify the cell type. Two neural networks are investigated and a comparison between these networks is drawn. Experimental results suggest that the proposed system provides fast, simple and efficient identification which can be used in automating laboratory reporting.  相似文献   

11.
Advances in digital technologies have allowed us to generate more images than ever. Images of scanned documents are examples of these images that form a vital part in digital libraries and archives. Scanned degraded documents contain background noise and varying contrast and illumination, therefore, document image binarisation must be performed in order to separate foreground from background layers. Image binarisation is performed using either local adaptive thresholding or global thresholding; with local thresholding being generally considered as more successful. This paper presents a novel method to global thresholding, where a neural network is trained using local threshold values of an image in order to determine an optimum global threshold value which is used to binarise the whole image. The proposed method is compared with five local thresholding methods, and the experimental results indicate that our method is computationally cost-effective and capable of binarising scanned degraded documents with superior results.  相似文献   

12.
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.  相似文献   

13.
Adaptive control of mobile robots using a neural network   总被引:1,自引:0,他引:1  
A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results.  相似文献   

14.
Step changes in input current are known to induce partial phase synchrony in ensembles of leaky integrate-and-fire neurons operating in the oscillatory or “regular firing” regime. An analysis of this phenomenon in the absence of noise is presented based on the probability flux within an ensemble of generalized integrate-and-fire neurons. It is shown that the induction of phase synchrony by a step input can be determined by calculating the ratio of the voltage densities obtained from fully desynchronized ensembles firing at the pre and post-step firing rates. In the limit of low noise and in the absence of phase synchrony, the probability density as a function of voltage is inversely proportional to the time derivative along the voltage trajectory. It follows that the magnitude of phase synchronization depends on the degree to which a change in input leads to a uniform multiplication of the voltage derivative over the range from reset to spike threshold. This analysis is used to investigate several factors affecting phase synchronization including high firing rates, inputs modeled as conductances rather than currents, peri-threshold sodium currents, and spike-triggered potassium currents. Finally, we show that without noise, the equilibrium ensemble density is proportional to the phase response curve commonly used to analyze oscillatory systems. Action Editor: John Rinzel  相似文献   

15.
In mammals, circadian rhythms are controlled by the neurons located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Each neuron in the SCN contains an autonomous molecular clock. The fundamental question is how the individual cellular oscillators, expressing a wide range of periods, interact and assemble to achieve phase synchronization. Most of the studies carried out so far emphasize the crucial role of the periodicity imposed by the light-dark cycle in neuronal synchronization. However, in natural conditions, the interaction between the SCN neurons is non-negligible and coupling between cells in the SCN is achieved partly by neurotransmitters. In this paper, we use a model of nonidentical, globally coupled cellular clocks considered as Goodwin oscillators. We mainly study the synchronization induced by coupling from an analytical way. Our results show that the role of the coupling is to enhance the synchronization to the external forcing. The conclusion of this paper can help us better understand the mechanism of circadian rhythm.  相似文献   

16.
Designing protein sequences that fold to a given three-dimensional (3D) structure has long been a challenging problem in computational structural biology with significant theoretical and practical implications. In this study, we first formulated this problem as predicting the residue type given the 3D structural environment around the C α atom of a residue, which is repeated for each residue of a protein. We designed a nine-layer 3D deep convolutional neural network (CNN) that takes as input a gridded box with the atomic coordinates and types around a residue. Several CNN layers were designed to capture structure information at different scales, such as bond lengths, bond angles, torsion angles, and secondary structures. Trained on a very large number of protein structures, the method, called ProDCoNN (protein design with CNN), achieved state-of-the-art performance when tested on large numbers of test proteins and benchmark datasets.  相似文献   

17.
Feedforward neural networks are a general class of nonlinear models that can be used advantageously to model dynamic processes. In this investigation, a neural network was used to model the dynamic behaviour of a continuous stirred tank fermenter in view of using this model for predictive control. In this system, the control setpoint is not known explicitly but it is calculated in such a way to optimize an objective criterion. The results presented show that neural networks can model very accurately the dynamics of a continuous stirred tank fermenter and, the neural model, when used recursively, can predict the state variables over a long prediction horizon with sufficient accuracy. In addition, neural networks can adapt rapidly to changes in fermentation dynamics.List of Symbols F Dimensionless flow rate (F/ V0) - F m3/h Flow rate - F 0 m3/h Inlet flow rate - J Objective cost function - K i Dimensionless constant in Eq. (3) (k i /s0) - k i kg/m3 Substrate inhibition constant in Haldane model - k m Dimensionless constant in Eq. (3) (k s /s0) - k m kg/m3 Substrate inhibition constant in Haldane model - n prediction horizon - S Dimensionless substrate concentration (s/s0) - s kg/m3 Substrate concentration - t h Time - v Dimensionless volume (V/V0) - V m3 Liquid volume in fermenter - W ij , W jk Weight matrices in neural network - X Dimensionless biomass concentration - x kg/m3 Biomass concentration - Y Biomass/substrate yield coefficient - Weighting factor in Eq. (4) - Dimensionless specific growth rate (/ ) - 1/h Maximum specific growth rate - 1/h Specific growth rate - Dimensionless time ( t)  相似文献   

18.
We examine the synchrony in the dynamics of localized [Ca2 + ]i oscillations among a group of cells exhibiting such complex Ca2 +  oscillations, connected in the form of long chain, via diffusing coupling where cytosolic Ca2 +  and inositol 1,4,5-triphosphate are coupling molecules. Based on our numerical results, we could able to identify three regimes, namely desynchronized, transition and synchronized regimes in the (T − ke) (time period-coupling constant) and (A − ke) (amplitude-coupling constant) spaces which are supported by phase plots (Δϕ verses time) and recurrence plots, respectively. We further show the increase of synchronization among the cells as the number of coupling molecules increases in the (T − ke) and (A − ke) spaces.  相似文献   

19.
In this work, a previously proposed methodology for the optimization of analytical scale protein separations using ion-exchange chromatography is subjected to two challenging case studies. The optimization methodology uses a Doehlert shell design for design of experiments and a novel criteria function to rank chromatograms in order of desirability. This chromatographic optimization function (COF) accounts for the separation between neighboring peaks, the total number of peaks eluted, and total analysis time. The COF is penalized when undesirable peak geometries (i.e., skewed and/or shouldered peaks) are present as determined by a vector quantizing neural network. Results of the COF analysis are fit to a quadratic response model, which is optimized with respect to the optimization variables using an advanced Nelder and Mead simplex algorithm. The optimization methodology is tested on two case study sample mixtures, the first of which is composed of equal parts of lysozyme, conalbumin, bovine serum albumin, and transferrin, and the second of which contains equal parts of conalbumin, bovine serum albumin, tranferrin, beta-lactoglobulin, insulin, and alpha -chymotrypsinogen A. Mobile-phase pH and gradient length are optimized to achieve baseline resolution of all solutes for both case studies in acceptably short analysis times, thus demonstrating the usefulness of the empirical optimization methodology.  相似文献   

20.
This study examines the utility of neural networks for detecting coronary artery disease noninvasively by using the clinical examination variables and extracting useful information from the diastolic heart sounds associated with coronary occlusions. It has been widely reported that coronary stenoses produce sounds due to the turbulent blood flow in these vessels. These complex and highly attenuated signals taken from recordings made in both soundproof and noisy rooms were detected and analyzed to provide feature set based on the poles and power spectral density function (PSD) of the Autoregressive (AR) method after Adaptive Line Enhancement (ALE) method. In addition, some physical examination variables such as sex, age, body weight, smoking condition, diastolic pressure, systolic pressure and derivation from them were included in the feature vector. This feature vector was used as the input pattern to the neural network. The analysis was studied on one hundred recordings (63 abnormal, 37 normals). The network correctly identified 84% of the subjects with coronary artery disease and 89% of the normal subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号