首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel strains of obligately chemolithoautotrophic, sulfur-oxidizing bacteria have been isolated from various depths of Lake Fryxell, Antarctica. Physiological, morphological, and phylogenetic analyses showed these strains to be related to mesophilic Thiobacillus species, such as T. thioparus. However, the psychrotolerant Antarctic isolates showed an adaptation to cold temperatures and thus should be active in the nearly freezing waters of the lake. Enumeration by most-probable-number analysis in an oxic, thiosulfate-containing medium revealed that the sulfur-oxidizing chemolithotroph population peaks precisely at the oxycline (9.5 m), although viable cells exist well into the anoxic, sulfidic waters of the lake. The sulfur-oxidizing bacteria described here likely play a key role in the biogeochemical cycling of carbon and sulfur in Lake Fryxell.  相似文献   

2.
The permanently frozen freshwater Lake Fryxell, located in the Dry Valleys of Antarctica, exhibits an ideal geochemistry for microbial sulfate reduction. To investigate the population of sulfate-reducing bacteria in Lake Fryxell, both 16S rRNA gene and metabolic primer sets targeting the dsrA gene for the dissimilatory sulfite reductase alpha subunit were employed to analyze environmental DNA obtained from the water column and sediments of Lake Fryxell. In addition, enrichment cultures of sulfate-reducing bacteria established at 4°C from Lake Fryxell water were also screened using the dsrA primer set. The sequence information obtained showed that a diverse group of sulfate-reducing prokaryotes of the domain Bacteria inhabit Lake Fryxell. With one exception, the enrichment culture sequences were not represented within the environmental sequences. Sequence data were compared with the geochemical profile of Lake Fryxell to identify possible connections between the diversity of sulfate-reducing bacteria and limnological conditions. Several clone groups were highly localized with respect to lake depth and, therefore, experienced specific physiochemical conditions. However, all sulfate-reducing bacteria inhabiting Lake Fryxell must function under the constantly cold conditions characteristic of this extreme environment.  相似文献   

3.
The effects of temperature and carbon substrate availability on the stimulation of sulfate reduction by indigenous populations of sulfate-reducing prokaryotes (SRP) in permanently ice-covered Lake Fryxell, Antarctica were investigated. Psychrophilic and halotolerant, lactate-degrading SRP showed significant metabolic activity throughout all sampled depths of the water column, suggesting that such organisms, possibly of marine origin, may be key contributors to carbon and sulfur cycling in Lake Fryxell. Planktonic and benthic strains of lactate-oxidizing sulfate-reducing bacteria (SRB) were isolated from samples of various depths of the anoxic water column and from surficial sediments. Phylogenetic analyses of 16S rRNA gene sequences placed the Fryxell sulfate-reducer (FSR) strains within the Deltaproteobacteria and showed them to be most closely related to the Arctic marine species of SRB Desulfovibrio frigidus and Desulfovibrio ferrireducens. Based on phylogenetic and phenotypic differences between the Antarctic FSR strains and related species of the genus Desulfovibrio, strain FSRsT (=DSM 23315T =ATCC BAA-2083T) is proposed as the type strain of a novel species of cold-active SRB, Desulfovibrio lacusfryxellense, sp. nov.  相似文献   

4.
Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 107 cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov.  相似文献   

5.
The permanently frozen freshwater Lake Fryxell, located in the Dry Valleys of Antarctica, exhibits an ideal geochemistry for microbial sulfate reduction. To investigate the population of sulfate-reducing bacteria in Lake Fryxell, both 16S rRNA gene and metabolic primer sets targeting the dsrA gene for the dissimilatory sulfite reductase alpha subunit were employed to analyze environmental DNA obtained from the water column and sediments of Lake Fryxell. In addition, enrichment cultures of sulfate-reducing bacteria established at 4 degrees C from Lake Fryxell water were also screened using the dsrA primer set. The sequence information obtained showed that a diverse group of sulfate-reducing prokaryotes of the domain Bacteria inhabit Lake Fryxell. With one exception, the enrichment culture sequences were not represented within the environmental sequences. Sequence data were compared with the geochemical profile of Lake Fryxell to identify possible connections between the diversity of sulfate-reducing bacteria and limnological conditions. Several clone groups were highly localized with respect to lake depth and, therefore, experienced specific physiochemical conditions. However, all sulfate-reducing bacteria inhabiting Lake Fryxell must function under the constantly cold conditions characteristic of this extreme environment.  相似文献   

6.
Geochemical processes in the Lake Fryxell Basin (Victoria Land,Antarctica)   总被引:2,自引:0,他引:2  
Major ion, nutrient, transition metal, and cadmium concentrations are presented for nine meltwater streams flowing into Lake Fryxell, a permanently stratified lake with an anoxic hypolimnion in Taylor Valley, Antarctica. For the major ions, stream compositions are considered in terms of dissolution of marine-derived salts and chemical weathering of local rocks. Although Lake Fryxell has undergone significant evaporative concentration, only calcite, of the simple salts, is predicted to precipitate. Geochemical budgets indicate, however, that large quantities of K, Mg, and SO4 have also been removed from the lake. Reverse weathering may be an important sink for K and Mg, although magnesium removal with calcium carbonate phases is also likely. Assuming constancy of composition over recent geologic time, all of the salts in the Fryxell water column could have been delivered under present flows in about three thousand years (chloride age).Comparison of nutrient concentrations in these meltwater streams with other flowing waters in the world reveals that the Fryxell streams are strikingly deficient in NO3-N but not PO4-P. The apparent nitrogen deficiency in Lake Fryxell itself can be attributed to the low annual stream loadings of this nutrient.Stream concentrations and loadings are also presented for Mn, Fe, Co, Ni, Cu, and Cd. Dissolved metal concentrations correlate roughly with average crustal abundances, suggesting that chemical weathering is the major source for these elements. Vertical metal profiles within Lake Fryxell itself appear to be governed by the formation of insoluble sulfide phases, or, in the case of Mn, by MnHPO4. However, dissolved nickel levels in sulfide-bearing waters are much higher than can be explained in terms of metal-sulfide equilibria, and we suspect that significant organic complexing of this metal is occurring in the deeper waters.  相似文献   

7.
This study investigated the spatiotemporal abundance and diversity of the α-subunit of the dissimilatory sulfite reductase gene (dsrA) in the meromictic Lake Suigetsu for assessing the sulfur-oxidizing bacterial community. The density of dsrA in the chemocline reached up to 3.1 × 106 copies ml?1 in summer by means of quantitative real-time PCR and it was generally higher than deeper layers. Most of the dsrA clones sequenced were related to green sulfur bacteria such as Chlorobium phaeovibrioides, C. limicola, and C. luteolum. Below the chemocline of the lake, we also detected other dsrA clones related to the purple sulfur bacterium Halochromatium salexigens and some branching lineages of diverse sequences that were related to chemotrophic sulfur bacterial species such as Magnetospirillum gryphiswaldense, Candidatus Ruthia magnifica, and Candidatus Thiobios zoothamnicoli. The abundance and community compositions of sulfur-oxidizing bacteria changed depending on the water depth and season. This study indicated that the green sulfur bacteria dominated among sulfur-oxidizing bacterial population in the chemocline of Lake Suigetsu and that certain abiotic environmental variables were important factors that determined sulfur bacterial abundance and community structure.  相似文献   

8.
Dissolved organic carbon (DOC) in Lake Fryxell, 10 streams flowing into the lake, and the moat surrounding the lake was studied to determine the influence of sources and biogeochemical processes on its distribution and chemical nature. Lake Fryxell is an amictic, permanently ice-covered lake in the McMurdo Dry Valleys which contains benthic and planktonic microbial populations, but receives essentially no input of organic material from the ahumic soils of the watershed. Biological activity in the water column does not appear to influence the DOC depth profile, which is similar to the profiles for conservative inorganic constituents. DOC values for the streams varied with biomass in the stream channel, and ranged from 0.2 to 9.7 mg C/L. Fulvic acids in the streams were a lower percentage of the total DOC than in the lake. These samples contain recent carbon and appear to be simpler mixtures of compounds than the lake samples, indicating that they have undergone less humification. The fulvic acids from just above the sediments of the lake have a high sulfur content and are highly aliphatic. The main transformations occurring as these fractions diffuse upward in the water column are 1) loss of sulfur groups through the oxycline and 2) decrease in aliphatic carbon and increase in the heterogeneity of aliphatic moieties. The fraction of modem14C content of the lake fulvic acids range from a minimum of 0.68 (approximately 3000 years old) at 15m depth to 0.997 (recent material) just under the ice. The major processes controlling the DOC in the lake appear to be: 1) The transport of organic matter by the inflow streams resulting in the addition of recent organic material to the moat and upper waters of the lake; 2) The diffusion of organic matter composed of relict organic material and organic carbon resulting from the degradation of algae and bacteria from the bottom waters or sediments of the lake into overlying glacial melt water, 3) The addition of recent organic matter to the bottom waters of the lake from the moat.  相似文献   

9.
Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it.  相似文献   

10.
In freshwater systems, contributions of chemosynthetic products by sulfur-oxidizing bacteria in sediments as nutritional resources in benthic food webs remain unclear, even though chemosynthetic products might be an important nutritional resource for benthic food webs in deep-sea hydrothermal vents and shallow marine systems. To study geochemical aspects of this trophic pathway, we sampled sediment cores and benthic animals at two sites (90 and 50 m water depths) in the largest freshwater (mesotrophic) lake in Japan: Lake Biwa. Stable carbon, nitrogen, and sulfur isotopes of the sediments and animals were measured to elucidate the sulfur nutritional resources for the benthic food web precisely by calculating the contributions of the incorporation of sulfide-derived sulfur to the biomass and of the biogeochemical sulfur cycle supporting the sulfur nutritional resource. The recovered sediment cores showed increases in 34S-depleted sulfide at 5 cm sediment depth and showed low sulfide concentration with high δ34S in deeper layers, suggesting an association of microbial activities with sulfate reduction and sulfide oxidation in the sediments. The sulfur-oxidizing bacteria may contribute to benthic animal biomass. Calculations based on the biomass, sulfur content, and contribution to sulfide-derived sulfur of each animal comprising the benthic food web revealed that 58%–67% of the total biomass sulfur in the benthic food web of Lake Biwa is occupied by sulfide-derived sulfur. Such a large contribution implies that the chemosynthetic products of sulfur-oxidizing bacteria are important nutritional resources supporting benthic food webs in the lake ecosystems, at least in terms of sulfur. The results present a new trophic pathway for sulfur that has been overlooked in lake ecosystems with low-sulfate concentrations.  相似文献   

11.
In perennially ice-covered lakes of Taylor Valley, Antarctica, “legacy”, a carryover of past ecosystem events, has primarily been discussed in terms of nutrient and salinity concentrations and its effect on the current ecology of the lakes. In this study, we determine how residual pools of ancient carbon affect the modern carbon abundance and character in the water columns of Lakes Fryxell, Hoare, and Bonney. We measure the stable carbon isotopic compositions and concentrations of particulate organic carbon (POC) and dissolved inorganic carbon (DIC) in the water column of these lakes over four seasons (1999–2002). These data are presented and compared with all the previously published Taylor Valley lacustrine carbon stable isotopic data. Our results show that the carbon concentrations and isotopic compositions of the upper water columns of those lakes are controlled by modern processes, while the lower water columns are controlled to varying degrees by inherited carbon pools. The water column of the west lobe of Lake Bonney is dominated by exceptionally high concentrations of DIC (55,000–75,000 μmol l−1) reflecting the long period of ice-cover on this lake. The east lobe of Lake Bonney has highly enriched δ13CDIC values resulting from paleo-brine evaporation effects in its bottom waters, while its high DIC concentrations provide geochemical evidence that its middle depth waters are derived from West Lake Bonney during a hydrologically connected past. Although ancient carbon is present in both Lake Hoare and Lake Fryxell, the δ13CDIC values in bottom waters suggest dominance by modern primary productivity-related processes. Anaerobic methanogenesis and methanotrophy are also taking place in the lower water column of Lake Fryxell with enough methane, oxidized anaerobically, to contribute to the DIC pool. We also show how stream proximity and high flood years are only a minor influence on the carbon isotopic values of both POC and DIC. The Taylor Valley lake system is remarkably stable in both inter-lake and intra-lake carbon dynamics. Handling editor: K. Martens  相似文献   

12.
Cyanobacterial diversity in the Salton Sea, a high-salinity, eutrophic lake in Southern California, was investigated using a combination of molecular and morphological approaches. Representatives of a total of 10 described genera (Oscillatoria, Spirulina, Arthrospira, Geitlerinema, Lyngbya, Leptolyngbya, Calothrix, Rivularia, Synechococcus, Synechocystis) were identified in the samples; additionally, the morphology of two cultured strains do not conform to any genus recognized at present by the bacteriological system. Genetic analysis, based on partial 16S rRNA sequences suggested considerable cryptic genetic variability among filamentous strains of similar or identical morphology and showed members of the form-genus Geitlerinema to be distributed among three major phylogenetic clades of cyanobacteria. Cyanobacterial mats, previously described from the Sea were, in fact, composed of both filamentous cyanobacteria and a roughly equivalent biomass of the sulfur-oxidizing bacterium Beggiatoa, indicating their formation in sulfide rich regions of the lake. Flow cytometric analysis of the water samples showed three striking differences between samples from the Salton Sea and representative marine waters: (1) phycoerythrin-containing unicells, while abundant, were much less abundant in the Salton Sea than they were in typical continental shelf waters, (2) Prochlorococcus appears to be completely absent, and (3) small (3–5 m) eukaryotic algae were more abundant in the Salton Sea than in typical neritic waters by one-to-two orders-of-magnitude. Based on flow cytometric analysis, heterotrophic bacteria were more than an order of magnitude more abundant in the Salton Sea than in seawater collected from continental shelf environments. Virus particles were more abundant in the Salton Sea than in typical neritic waters, but did not show increases proportionate with the increase in bacteria, picocyanobacteria, or eukaryotic algae.  相似文献   

13.
A moderately psychrophilic purple non-sulfur bacterium, Rhodoferax antarcticus strain Fryx1, is described. Strain Fryx1 was isolated from the water column under the ice of the permanently frozen Lake Fryxell, Antarctica. Cells of Fryx1 are long thin rods and contain gas vesicles, the first report of such structures in purple non-sulfur bacteria. Gas vesicles are clustered at 2–4 sites per cell. Surprisingly, the 16S rRNA gene sequence of strain Fryx1 is nearly identical to that of Rfx. antarcticus strain AB, a short, vibrio-shaped phototroph isolated from an Antarctic microbial mat. Although showing physiological parallels, strains AB and Fryx1 differ distinctly in their morphology and absorption spectra. DNA–DNA hybridization shows that the genomes of strains AB and Fryx1 are highly related, yet distinct. We conclude that although strains AB and Fryx1 may indeed be the same species, their ecologies are quite different. Unlike strain AB, strain Fryx1 has adapted to a planktonic existence in the nearly freezing water column of Lake Fryxell.Dedicated to Prof. Dr. Hans Günter Schlegel on the occasion of his 80th birthday.  相似文献   

14.
Despite detailed studies of marine sulfur-oxidizing bacteria, our knowledge concerning their counterparts in freshwater lake ecosystems is limited. Genome sequencing of the freshwater sulfur-oxidizing betaproteobacteria Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H have been completed. Strain skB26 possessed a circular plasmid of 86.6-kbp in addition to its chromosome, and an approximate 18-kbp region of the plasmid was occupied by an arxA-like operon, encoding a new clade of anaerobic arsenite oxidase. Multilocus sequence analysis showed that strain skB26 could not be assigned to any existing order; thus a novel order, Sulfuricellales, is proposed. The genomes of strains skB26 and sk43H were examined, focusing on the composition and the phylogeny of genes involved in the oxidation of inorganic sulfur compounds. Strains skB26 and sk43H shared a common pathway, which consisted of Sqr, SoxEF, SoxXYZAB, Dsr proteins, AprBA, Sat, and SoeABC. Comparative genomics of betaproteobacterial sulfur oxidizers showed that this pathway was also shared by the freshwater sulfur oxidizers Thiobacillus denitrificans and Sideroxydans lithotrophicus. It also revealed the presence of a conserved gene cluster, which was located immediately upstream of the betaproteobacterial dsr operon.  相似文献   

15.
Microbial Thiocyanate Utilization under Highly Alkaline Conditions   总被引:3,自引:1,他引:2       下载免费PDF全文
Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase activity which converted cyanate (CNO) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate.  相似文献   

16.
Archaea were detected in molecular diversity studies of the permanently frozen Lake Fryxell, Antarctica. Two clusters of methanogens were detected in the sediments, and another cluster of possibly methanotrophic Euryarchaeota was detected in the anoxic water column just above the sediments. One crenarchaeote was detected in water just below the oxycline. The Archaea present in Lake Fryxell are likely involved in the major biogeochemical cycles that occur there.  相似文献   

17.
1. The influence of inorganic nitrogen and phosphorus enrichment on phytoplankton photosynthesis was investigated in Lakes Bonney (east and west lobes), Hoare, Fryxell and Vanda, which lie in the ablation valleys adjacent to McMurdo Sound, Antarctica. Bioassay experiments were conducted during the austral summer on phytoplankton populations just beneath the permanent ice cover in all lakes and on populations forming deep-chlorophyll maxima in the east and west lobes of Lake Bonney. 2. Phytoplankton photosynthesis in surface and mid-depth (13 m) samples from both lobes of Lake Bonney were stimulated significantly (P < 0.01) by phosphorus enrichment (2 μM) with further stimulation by simultaneous phosphorus plus NH4+ (20 μM) enrichment. Similar trends were observed in deeper waters (18 m) from the east lobe of Lake Bonney, although they were not statistically significant at P < 0.05. Photosynthesis in this lake was never enhanced by the addition of 20 μM NH4+ alone. Simultaneous addition of phosphorus plus nitrogen stimulated photosynthesis significantly (P < 0.01) in both Lake Hoare and Lake Fryxell. No nutrient response occurred in Lake Vanda, where activity in nutrient-enriched samples was below unamended controls; results from Lake Vanda are suspect owing to excessively long sample storage in the field resulting from logistic constraints. 3. Ambient dissolved inorganic nitrogen (DIN) (NH4++ NO2?+ NO3?): soluble reactive phosphorus (SRP) ratios partially support results from bioassay experiments indicating strong phosphorus deficiency in Lake Bonney and nitrogen deficiency in Lakes Hoare and Fryxell. DIN : SRP ratios also imply phosphorus deficiency in Lake Vanda, although not as strong as in Lake Bonney. Particulate carbon (PC): particulate nitrogen (PN) ratios all exceed published ratios for balanced phytoplankton growth, indicative of nitrogen deficiency. 4. Vertical nutrient profiles in concert with low advective flux, indicate that new (sensu Dugdale & Goering, 1967) phytoplankton production in these lakes is supported by upward diffusion of nutrients from deep nutrient pools. This contention was tested by computing upward DIN : SRP flux ratios across horizontal planes located immediately beneath each chlorophyll maximum and about 2 m beneath the ice (to examine flux to the phytoplankton immediately below the ice cover). These flux ratios further corroborated nutrient bioassay results and bulk DIN : SRP ratios indicating phosphorus deficiency in Lakes Bonney and Vanda and potential nitrogen deficiency in Lakes Hoare and Fryxell. 5. Neither biochemical reactions nor physical processes appear to be responsible for differences in nutrient deficiency among the study lakes. The differences may instead be related to conditions which existed before or during the evolution of the lakes.  相似文献   

18.
Bacteriohopanepolyols (BHPs) are pentacyclic triterpenoid lipids that contribute to the structural integrity and physiology of some bacteria. Because some BHPs originate from specific classes of bacteria, BHPs have potential as taxonomically and environmentally diagnostic biomarkers. For example, a stereoisomer of bacteriohopanetetrol (informally BHT II) has been associated with anaerobic ammonium oxidation (anammox) bacteria and suboxic to anoxic marine environments where anammox is active. As a result, the detection of BHT II in the sedimentary record and fluctuations in the relative abundance of BHT II may inform reconstructions of nitrogen cycling and ocean redox changes through the geological record. However, there are uncertainties concerning the sources of BHT II and whether or not BHT II is produced in abundance in non‐marine environments, both of which are pertinent to interpretations of BHT II signatures in sediments. To address these questions, we investigate the BHP composition of benthic microbial mats from Lake Fryxell, Antarctica. Lake Fryxell is a perennially ice‐covered lake with a sharp oxycline in a density‐stabilized water column. We describe the diversity and abundance of BHPs in benthic microbial mats across a transect from oxic to anoxic conditions. Generally, BHP abundances and diversity vary with the morphologies of microbial mats, which were previously shown to reflect local environmental conditions, such as irradiance and oxygen and sulfide concentrations. BHT II was identified in mats that exist within oxic to anoxic portions of the lake. However, anammox bacteria have yet to be identified in Lake Fryxell. We examine our results in the context of BHPs as biomarkers in modern and ancient environments.  相似文献   

19.
It was investigated whether quorum sensing (QS) mediated by N-acylhomoserine lactones (AHLs) was important for heterotrophic bacteria from the littoral zone of the oligotrophic Lake Constance for growth with organic particles. More than 900 colonies from lake water microcosms with artificial organic aggregates consisting of autoclaved unicellular algae embedded in agarose beads were screened for AHL-production. AHL-producing bacteria of the genus Aeromonas enriched in the microcosms but AHLs could not be detected in any microcosm. To test for a potential function of AHL-mediated QS, growth experiments with the wild type and an AHL-deficient mutant of Aeromonas hydrophila in lake water microcosms were performed. Growth of both strains did not differ in single cultures and showed no mutual influence in co-cultures. In co-cultures with a competitor bacterium belonging to the CytophagaFlavobacterium group, growth of both A. hydrophila strains was reduced while growth of the competitor bacterium was not affected. Exogenous AHL-addition did not influence growth of the Aeromonas strains in any microcosm experiment. These results showed that AHL-mediated QS was not required for A. hydrophila during colonization and degradation of organic particles in lake water microcosms, suggesting that cell–cell signalling of heterotrophic bacteria in oligotrophic waters relies on novel signal molecules.  相似文献   

20.
Culture-dependent and -independent techniques were used to study the diversity of chemolithoautotrophic sulfur-oxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake containing an unprecedentedly high sulfide concentration in the anoxic monimolimnion. Both approaches revealed the dominance of bacteria belonging to the genus Thioalkalimicrobium, which are common inhabitants of soda lakes. A dense population of Thioalkalimicrobium (up to 10(7) cells/ml) was found at the chemocline, which is characterized by a steep oxygen-sulfide gradient. Twelve Thioalkalimicrobium strains exhibiting three different phenotypes were isolated in pure culture from various locations in Soap Lake. The isolates fell into two groups according to 16S rRNA gene sequence analysis. One of the groups was closely related to T. cyclicum, which was isolated from Mono Lake (California), a transiently meromictic, haloalkaline lake. The second group, consisting of four isolates, was phylogenetically and phenotypically distinct from known Thioalkalimicrobium species and unique to Soap Lake. It represented a new species, for which we suggest the name Thioalkalimicrobium microaerophilum sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号