首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycystic ovary syndrome (PCOS) is characterized by cystogenesis; however, the cause of this cystogenesis is unknown. At ovulation, preovulatory collagenolytic activities in the ovarian follicles increase and various proteinases are needed to degrade the tissues surrounding the follicles. To clarify the roles of enzymes in collagen degradation of the follicular wall of polycystic ovary (PCO) in relation to the cystogenesis, we examined expression of lysyl oxidase (LOX), which initiates cross-link formation of the collagen and elastin in the extracellular matrix, and expression of matrix metalloproteinases (MMPs) in ovaries of model rats with PCO induced by dehydroepiandrosterone (DHEA) compared with MMP expression in control rats. DHEA treatment increased LOX mRNA expression to more than three times the control value (P: < 0.01). MMP-2 mRNA expression in control rats was threefold greater than that in the DHEA-induced group (P: < 0.05). Expression of both latent and active forms of MMP-2 in controls was more than twice that in the DHEA-induced group (P: < 0.05) as shown by Western blotting, and expression of the active form of MMP-2 was also twice as high in the controls as in the DHEA-treated group (P: < 0.05) as shown by zymography. Our results suggest that depression of MMP-2 activity and increased LOX expression may be one of the causes of the cystogenesis of PCO.  相似文献   

2.
A wide range of experimental manipulations results in an anovulatory polycystic ovarian (PCO) condition in the rat. Although PCO has been studied in a number of these models, research has centered on the condition after it is well established rather than as it develops. Consequently, it is still not clear exactly what follicular cysts are or how and why they form. Therefore, we studied the development of PCO in rats treated with estradiol-valerate (EV). In this model, definitive cysts were present 8-9 wk after a single injection of EV. Animals were killed at 5, 11, 16, 21, 28 and 56 days after EV treatment. Serum was assayed for luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Ovaries were weighed and prepared for histologic examination. The ovaries were serially sectioned such that the number and size distribution of normal and atretic follicles could be assessed quantitatively. Oviducts were examined for the presence of ova. Immediately after EV treatment, ovulatory cycles ceased; by 16-20 days posttreatment, all animals exhibited persistent vaginal cornification. Basal concentrations of serum LH and FSH fell to a nadir at 11 days posttreatment, after which both gonadotropins exhibited a trend toward recovery. Within the first 28 days after treatment, ovarian weights declined significantly as did the total number of healthy follicles. Atretic follicles of all sizes were particularly numerous at 16 days. By 28 days, the decline in the number of healthy follicles reached a plateau. Numerous atretic, large secondary follicles were particularly prominent on the background of the decreasing number of normal follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the present study, we investigated whether vascular endothelial growth factor A (VEGFA) plays a critical intraovarian survival role in gonadotropin-dependent folliculogenesis. The effect of an intrabursal administration of a VEGFA antagonist on follicular development, apoptosis, and levels of pro- and antiapoptotic proteins of BCL2 family members (BAX, BCL2, and BCL2L1), as well as of TNFRSF6 (also known as FAS) and FAS ligand (FASLG), was examined. To inhibit VEGFA, a soluble FLT1/Fc Chimera (Trap) was administered to prepubertal eCG-treated rats. Injection of 0.5 mug of Trap per ovary did not change the number of preantral follicles (PFs) or early antral follicles (EAFs); however, it significantly decreased the number of periovulatory follicles 48 h after surgery and significantly increased the number of atretic follicles. No significant differences were found in any stage of the follicles either 12 or 24 h after injection. Cells undergoing DNA fragmentation were quantified by performing TUNEL on ovarian sections. Trap treatment caused a twofold increase in the number of apoptotic cells in EAFs. DNA isolated from antral follicles incubated for 24 h exhibited the typical apoptotic DNA pattern. Follicles obtained from Trap-treated ovaries showed a significant increase in the spontaneous onset of apoptotic DNA fragmentation. The injection of Trap significantly increased the levels of BAX and decreased the levels of BCL2 protein. The ratio of BCL2L1L:BCL2L1s was significantly diminished in follicles obtained from ovaries treated with Trap. No changes in the levels of TNFRSF6 or FASLG were observed after treatment. We concluded that the local inhibition of VEGFA activity appears to produce an increase in ovarian apoptosis through an imbalance among the BCL2 family members, thus leading a larger number of follicles to atresia.  相似文献   

4.
Treatment with the anticancer drug cyclophosphamide (CPA) destroys ovarian follicles. The active metabolites of CPA are detoxified by conjugation with glutathione (GSH). We tested the hypotheses that CPA causes apoptosis in ovarian follicles and that suppression of ovarian GSH synthesis before CPA administration enhances CPA-induced apoptosis. Proestrous rats were given two injections, 2 h apart, with (1) saline, then saline; (2) saline, then 50 mg/kg CPA; (3) saline, then 300 mg/kg CPA; or (4) 5 mmol/kg buthionine sulfoximine (BSO) to inhibit glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, and then 50 mg/kg CPA. Statistically significantly increased DNA fragmentation by agarose gel electrophoresis and granulosa cell apoptosis by TUNEL were observed in the CPA-treated ovaries 24 h after the second injection, but BSO did not enhance the effect of 50 mg/kg CPA. We next tested the hypothesis that CPA depresses ovarian GSH concentration and expression of the rate-limiting enzyme in GSH synthesis, GCL. Proestrous rats were injected with 300 or 50 mg/kg CPA or vehicle and were sacrificed 8 or 24 h later. After CPA treatment, ovarian and hepatic GSH levels decreased significantly, and ovarian GCL subunit mRNA levels increased significantly. There were no significant changes in GCL subunit protein levels. Finally, we tested the hypothesis that GSH depletion causes apoptosis in ovarian follicles. Proestrous or estrous rats were injected with 5 mmol/kg BSO or saline at 0700 and 1900 h. There was a significant increase in the percentage of histologically atretic follicles and a nonsignificant increase in the percentage of apoptotic, TUNEL-positive follicles 24 h after onset of BSO treatment. Our results demonstrate that CPA destroys ovarian follicles by inducing granulosa cell apoptosis and that CPA treatment causes a decline in ovarian GSH levels. More pronounced GSH suppression achieved after BSO treatment did not cause a statistically significant increase in follicular apoptosis. Thus, GSH depletion does not seem to be the mechanism by which CPA causes follicular apoptosis.  相似文献   

5.
Sa 45.249 was applied for 12 days to groups of ten gilts each. A daily dose of 3, 6, 12 or 24 mg inhibited cyclic functions effectively; estrus was observed 4.5 ± 0.8, 4.8 ± 0.8, 5.2 ± 0.9 and 6.1 ± 0.6 days after cessation of treatment, respectively. All animals were slaughtered 8 days after induced estrus. Only animals treated with 3 mg showed a high incidence of ovarian cysts simultaneously with the occurrence of corpora lutea. In animals treated with higher dosages, only one (6 mg) had 4 cystic follicles, but simultaneously 12 corpora lutea. In another study, the effectiveness of Sa 45.249, applied at different doses, for differing time periods, and starting at different days of the cycle, was investigated. Doses ranged from 3 to 9 mg/day, duration of treatment from 8 to 16 days and treatments commenced on days 2, 5, 10, 15 or 19 of the cycle. An increase in the daily doses of 1 mg resulted in a delay of estrus of less than 0.1 day. Of 99 gilts, 93 showed an estrus 6.5 ± 1.7 days after cessation of treatment. None of the variables studied had a significant effect on the occurrence of estrus or the interval between treatment and the onset of heat.  相似文献   

6.
In this study we investigated whether or not liver regeneration is facilitated by dehydroepiandrosterone (DHEA) after partial (70%) hepatectomy in rats. Treatment with DHEA (300 mg/kg body weight) did not cause any significant increase in the expression ratio of proliferating cell nuclear antigen (PCNA) in sham-operated controls; however, in partially hepatectomized rats it caused a significant increase in the ratio in hepatocytes 24 and 36 hr after hepatectomy. In partially hepatectomized rats, DHEA treatment significantly accelerated the restoration of liver 48, 60, and 72 hr after partial hepatectomy. The restoration rate in DHEA-treated hepatectomized rats at 72 hr was 1.3-fold greater than in partially hepatectomized controls. Treatment with androstenedione (300 mg/kg body weight), the first metabolite of DHEA, did not cause any significant increase in the expression of PCNA in either sham-operated controls or partially hepatectomized rats. These results indicate that DHEA itself promotes the liver regenerative process after partial hepatectomy in rats.  相似文献   

7.
The effects of multiple somatostatin (SRIH-14) treatment on the pituitary-ovarian axis were examined in infant rats. Female Wistar rats received subcutaneously two daily 20 μg/100g b.w. doses for five consecutive days (from 11 to 15 days of age). Changes in cell volume, volume density and number per unit area (mm2) of follicle-stimulating (FSH), luteinizing (LH) and somatotropic (GH) immunolabeled cells were evaluated by stereology and morphometry. Serum FSH and LH concentrations were determined by RIA. Ovaries were analyzed by simple point counting of follicles. SRIH-14 treatment significantly reduced FSH and LH cell volume, while their volume density and number per unit area were unaltered. Serum concentrations of FSH and LH were significantly reduced. Volume and volume density of GH cells was significantly decreased after SRIH-14 treatment, while their number per unit area was unaltered. In the ovary, SRIH-14 induced a significant increase in the percentage of primordial follicles followed by a significant decrease in percentage of primary follicles. The number of healthy and atretic preantral follicles was unchanged. It can be concluded that SRIH-14 treatment during the infantile period markedly inhibits pituitary FSH, LH and GH cells. In the ovary, SRIH-14 acts by inhibiting initial folliculogenesis without affecting atretic processes.  相似文献   

8.
The steroidogenic potential of various physiological compartments within the ovary of the hen were examined using in vitro systems. Three-hour incubations of individual whole small follicles (less than 1 mm-1 cm) or 100,000 collagenase-dispersed theca cells of the five largest ovarian follicles (F1-F5) were conducted in 1 ml of Medium 199 at 37 degrees C in the presence and absence of luteinizing hormone (LH) (0.39, 0.78, 1.56, 3.13 and 6.25 ng), progesterone (5 ng), and dehydroepiandrosterone (DHEA, 5 ng). Steroid output was measured by radioimmunoassay of incubation media. Progesterone was not produced by small follicles although they are a major source of DHEA and estradiol and a significant source of androstenedione. Output of DHEA, androstenedione and estradiol was highly stimulated by LH. The substrate for androstenedione and estradiol in small follicles is probably DHEA. Output of DHEA and androstenedione in theca cells of F2-F5 was stimulated by LH in a dose-related manner. A dose-response relationship between estradiol output and the concentration of LH in media was not apparent in theca cells from F2-F5. Steroidogenesis in theca tissue of large follicles occurs predominantly via the delta 4 pathway. The ability of these theca cells to metabolize progesterone to androstenedione is lost between 36 and 12 h before ovulation. Their ability to metabolize DHEA to androstenedione is still present 12 h before ovulation. Aromatase activity is significantly reduced between 36 and 12 h before ovulation. These data indicate that both large and small follicles can be stimulated by LH. The small follicles are the major source of estrogen. As the large yolky follicles mature, steroidogenesis shifts from the delta 5 to the delta 4 pathway. By 12 h before ovulation, the F1 follicle has lost the ability to convert progesterone to androstenedione. The inability of the largest ovarian follicle to convert progesterone to androstenedione contributes at least in part to the preovulatory increase in the plasma concentration of progesterone that generates the preovulatory LH surge by positive feedback.  相似文献   

9.
Twice daily injections of purified ovine and human FSH were used to investigate the control of ovarian follicle development in hypogonadotrophic hypogonadal (hpg) mice. Treatment for 5 days with doses greater than 3 micrograms resulted in a significant increase in the total number of growing follicles and the development of antral follicles. This was associated with increases in uterine weights and vaginal opening, indicating that steroidogenesis had also been stimulated. Further studies of the effects of combined injections of FSH and LH, linked with morphological analysis of ovarian interstitial cells, suggested that any contribution of background or contaminating LH to the effects of the FSH injections was minimal. It therefore appears that, in mice, FSH alone is capable of stimulating an increase in the initiation of follicle growth, of triggering the development of antral follicles, and supporting ovarian steroidogenesis.  相似文献   

10.
DNA distribution of mast cell populations in growing rats   总被引:1,自引:0,他引:1  
The proliferation of rat peritoneal mast cells was examined under normal conditions in vivo. DNA content of individual mast cells was measured by cytofluorometry after staining with the bibenzimidazole dye Hoechst 33258. Diploid non mast cells from each rat were used as a biological standard, which resulted in small long-term variations in the method. The proportion of mast cells in the S + G2 region of the DNA distribution was about 4% for young rats (24 days old, body-weights about 60 g). It decreased in relation to body-weight, and was less than 1% for 105-day-old rats weighing 400 g. During the same growth period the total number of mast cells in the peritoneal cavity increased about 8-fold. The total number of proliferating cells, about 30,000, remained constant throughout the observation period. No evidence of polyploidization or accumulation in G2 of mast cell nuclei was found. It is concluded that peritoneal mast cells increase in number by mitotic proliferation of differentiated cells.  相似文献   

11.
The dynamics of ovarian follicular development depend on a timely interaction of gonadotropins and gonadal feedback in the mare. The development and efficacy of genetically cloned recombinant equine gonadotropins (reFSH and reLH) increase follicular activity and induce ovulation, respectively, but an optimum embryo recovery regimen in superovulated mares has not been established. The objective of this study was to determine if treatment with reFSH followed by reLH would increase the embryo per ovulation ratio and the number of embryos recovered after superovulation in mares. Sixteen estrous cycling mares of light horse breeds (4-12 years) were randomly assigned to one of two groups: Group 1; reFSH (0.65mg)/PBS (n=8) and Group 2; reFSH (0.65mg)/reLH (1.5mg) (n=8). On the day of a 22-25mm follicle post-ovulation mares were injected IV twice daily with reFSH for 3 days (PGF(2α) given IM on the second day of treatment) and once per day thereafter until a follicle or cohort of follicles reached 29mm after which either PBS or reLH was added and both groups injected IV twice daily until the presence of a 32mm follicles, when reFSH was discontinued. Thereafter, mares were injected three times daily IV with only PBS or reLH until a majority of follicles reached 35-38mm when treatment was discontinued. Mares were given hCG IV (2500IU) to induce ovulation and bred. Embryo recovery was performed on day 8 day post-treatment ovulation. Daily jugular blood samples were collected from the time of first ovulation until 8 days post-treatment ovulation. Blood samples were analyzed for LH, FSH, estradiol, progesterone and inhibin by validated RIA. Duration of treatment to a ≥35mm follicle(s) and number of ovulatory size follicles were similar between reFSH/reLH and reFSH/PBS treated mares. The number of ovulations was greater (P<0.01) in the reFSH/reLH group, while the number of anovulatory follicles was less (P<0.05) compared to the reFSH/PBS group. Number of total embryos recovered were greater in reFSH/reLH mares than in the reFSH/PBS mares (P≤0.01). The embryo per ovulation ratio tended to be greater (P=0.07) in the reFSH/reLH mares. Circulating concentrations of estradiol, inhibin, LH and progesterone were not statistically different between groups. Plasma concentrations of FSH were less (P<0.01) in the reFSH/reLH treated mares on days 0, 1, 4, 6, 7 and 8 post-treatment ovulation. In summary, reFSH with the addition of reLH, which is critical for final follicular and oocyte maturation, was effective in increasing the number of ovulations and embryos recovered, as well as reduce the number of anovulatory follicles, making this a more viable option than treatment with reFSH alone. Further evaluation is needed to determine the dose and regimen of reFSH/reLH to significantly increase the embryo per ovulation ratio.  相似文献   

12.
To evaluate ovarian response in Angus cows previously treated with progesterone (P4), animals were randomly assigned to two groups: T600 group (n=14), 600 mg of P4/day. P4 was injected from days 3 to 7 of the estrous cycle. On day 7, superovulatory treatments began. The control group (n=12) was given vehicle only. The superovulatory treatments in the control group began on days 7-9 of the estrous cycle. The superovulatory total treatment dose of 400mg NIH FSH P1 was given twice a day over a 4-day period. Ultrasonography of the ovaries was conducted 3 days preceding the initiation of superovulatory treatment, every 24h. In both groups, an additional ultrasonographic evaluation was made at 24h after the end of superovulatory treatment. Blood samples were collected 4 days preceding the initiation of superovulatory treatment, every 24h. Additional samples were taken from the P600 group for 12 day after of initiation of superovulatory treatment every 24h, except on the fifth day after the initiation of superovulatory treatment. In the P600 group, P4 concentrations were greater than in the control group (P<0.01) and remained over 1 ng/ml up to day 11 after beginning of superovulatory treatment. The diameter of the dominant follicle was larger in the animals of the control group (P<0.01). Cows of the P600 group had a greater number of Class I (3-4mm) follicles (P<0.01). A significant day and treatment effect (P<0.01) were observed in Class II (5-9 mm) follicles. Effects due to treatment on the number of Class III follicles (P<0.05) were observed. In the P600 group, no estrous post-superovulatory was observed and there were no ovulations that occurred. Conversely, 100% of the cows of the control group showed estrous. In the P600 group, there were a greater number of Class III follicles (P<0.01) and a lesser number of Class II follicles (P<0.05) at 24h after the end of superovulatory. In the control group, 66.7% of the cows responded to superovulatory treatments. In conclusion, the daily administration of 600 mg of P4, from days 3 to 7 of the estrous cycle, produces an increase of plasma concentrations of this hormone from day 4, resulting in changes in follicular dynamics (absence of follicles greater than 10mm of diameter and an increase of the population of Class I follicles). As to the ovarian stimulation using Folltropin V in animals receiving a daily injection of 600 mg of P4 from days 3 to 7 of the estrous cycle, a greater population of follicles>or=10mm developed by 24h after superovulatory treatments were completed.  相似文献   

13.
Quantitative changes in the total number and distribution of ovarian mast cells have been studied after administration of histamine and pentobarbitone sodium to rats at pro-oestrous stage. No significant differences in the total cell counts per section and percentage distribution in the hilar and stromal regions of the ovary were observed after blockade of ovulation with pentobarbitone as compared to control. However, after 24 hr of histamine treatment the number of cells was significantly less than that of oestrous stage but no change was seen relative to the pro-oestrous stage. The results suggest that the number of cells increases late in the pro-oestrous stage by invasion or differentiation in the stroma to maintain the requisite levels of histamine during ovulation.  相似文献   

14.
Evidence exists to support the concept that ovarian hormones influence mast cell functioning and related events. Here, we evaluated the constitutive gender difference and the influence of ovarian status on rat mast cell (MC) distribution in jejunum and colon, histamine synthesis and/or its release elicited by Substance P (SP). Higher mast cell (MC) number and histamine release were found in female compared with male. In female rats, hormonal status did not affect the density of resident MC neither in the jejunum nor in the colon. Interestingly, histamine levels released after SP stimulation of jejunal segment was reduced in ovariectomized (OVX) compared with sham OVX rats, and restored in OVX female receiving progesterone. In the colon, OVX resulted in a significant increase in histamine levels released after SP stimulation and a treatment with progesterone did not restore basal histamine levels. Thus, ovarian steroid hormones do not affect jejunal and colonic mast cell number. However, the hormonal status differently influences jejunal and colonic MC sensitivity to SP.  相似文献   

15.
Summary The proliferation of rat peritoneal mast cells was examined under normal conditions in vivo. DNA content of individual mast cells was measured by cytofluorometry after staining with the bibenzimidazole dye Hoechst 33258. Diploid non mast cells from each rat were used as a biological standard, which resulted in small long-term variations in the method. The proportion of mast cells in the S+G2 region of the DNA distribution was about 4% for young rats (24 days old, body-weights about 60 g). It decreased in relation to body-weight, and was less than 1% for 105-day-old rats weighing 400 g. During the same growth period the total number of mast cells in the peritoneal cavity increased about 8-fold. The total number of proliferating cells, about 30,000, remained constant throughout the observation period. No evidence of polyploidization or accumulation in G2 of mast cell nuclei was found. It is concluded that peritoneal mast cells increase in number by mitotic proliferation of differentiated cells.Supported by grants from the Swedish Medical Research Council, Project No. 2235  相似文献   

16.
One of the characteristics of polycystic ovary syndrome (PCOS) is the presence of cystic follicles in various stages of growth and atresia, the latter of which is known to be the result of apoptosis and tissue remodeling. To further investigate the process of follicular atresia, we compared ovarian expression and localization of Fas, Fas ligand (FasL), casapse-8 and membrane-type1 matrix metalloproteinase (MT1-MMP) in rats treated with dehydroepiandrosterone (DHEA) as a model of PCOS, and in control rats. We found that the numbers of TdT-mediated dUTP-biotin nick end-labeling (TUNEL)-positive follicles were significantly higher in ovaries from PCOS rats than in those from control rats (P < 0.05), as were ovarian levels of FasL mRNA and protein, processed caspase-8 protein and MT1-MMP mRNA. Correspondingly, we also observed an increase in the level of MTI-MMP catalytic activity and a decrease in the level of pro-caspase-8 protein. In addition, immunohistochemical analyses showed that MT1-MMP and FasL co-localize with TUNEL-positive apoptotic granulosa cells within atretic follicles of PCOS ovaries. Our results suggest that under the PCOS-like conditions induced by DHEA, the Fas/FasL/Caspase-8 (death receptor dependent) pathway is pivotal for follicular atresia, and that increased levels of MT1-MMP likely play an important role in tissue remodeling during structural luteolysis.  相似文献   

17.
Previous studies have shown that ovotoxicity induced in rats by dosing with 4-vinylcyclohexene diepoxide (VCD) is likely via acceleration of the normal rate of atresia (apoptosis). The present study was designed to investigate the apoptosis-related caspase cascades as a component of this phenomenon in isolated ovarian small follicles. Female F344 rats were given a single dose of VCD (80 mg/kg, i.p., on Day 1; a time when ovotoxicity has not been initiated), or dosed daily for 15 days (80 mg/kg, i.p., on Day 15; a time when significant ovotoxicity is underway). Ovaries were collected after the final dose. Small preantral follicles (25-100 microm in diameter) were isolated, cellular fractions were prepared, and cleavage activity or protein expression levels of caspases-3, -8, and -9 were measured. Cytosolic caspase-3 activity was increased in small follicles (P < 0.01) by VCD treatment (Day 1, 2.86 +/- 0.23; Day 15, 3.25 +/- 0.64, VCD/control, n = 3). This activation was not seen in large or antral follicles (not targeted by VCD). Procaspase-3 protein was increased(P < 0.05) by VCD treatment 212% over controls in small ovarian follicles in Day 15, but not Day 1-dosed rats. Immunofluorescence staining intensity was evaluated by confocal microscopy. Caspase-3 protein, located in the cytosolic compartment of oocytes and granulosa cells of preantral follicles in various stages of development, was selectively increased (P < 0.05) in primordial and small primary follicles from Day 15 VCD-dosed rats. Caspase-8 activity was increased in small follicles in Day 15, but not in Day 1-treated rats; whereas caspase-9 activity was increased by VCD on Day 1 in the mitochondrial fraction. Thus, these data provide evidence that accelerated atresia induced in small ovarian follicles in rats by VCD is associated with activation of a caspase-mediated cascade.  相似文献   

18.
The ovaries from mast cell-normal (+/+) and mast cell-deficient (W/Wv) mice were examined with light and electron microscopy. In addition the effect of ovariectomy and subsequent steroid treatment on total uterine histamine content, total mast cell numbers and surface and glandular epithelial cell heights was measured. The ovaries of +/+ mice were normal, displaying various stages of follicular growth and atresia and numerous corpora lutea; the ovaries of W/Wv mice lacked follicles and corpora lutea but contained numerous hyperplastic interstitial cells which contained numerous lipid droplets, vesiculated mitochondria and abundant endoplasmic reticulum suggestive of steroid synthesis. Steroid treatment of ovariectomized +/+ and W/Wv mice caused a significant increase in uterine wet weight and endometrial surface and glandular epithelial cell heights. In +/+ mice, steroid treatment caused a concomitant increase in total mast cells per uterine horn while mast cells were totally absent in W/Wv mice. The increase in uterine histamine in +/+ mice is consistent with the increase in mast cell numbers. Measurable amounts of uterine histamine, which increases slightly after steroid treatment, were demonstrated in W/Wv mice. Since the uteri of +/+ and W/Wv mice respond to steroids in a similar manner with the sole exception being histamine content and mast cell numbers, our results demonstrate the potential of using these animals to investigate the role(s) of uterine mast cells and non-mast cell uterine histamine in the process of implantation and the formation of a decidual cell response.  相似文献   

19.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

20.
The objective of this study was to develop a model for the study of abnormal ovarian follicles in cattle by treating heifers with adrenocorticotrophic hormone (ACTH) (100 iu at 12 h intervals for 7 days, beginning on day 15 of the oestrous cycle). Cortisol concentrations increased (P < 0.05) within 24 h after beginning ACTH treatment and cortisol and progesterone concentrations remained elevated after cessation of ACTH treatment for 8 and 4 days, respectively. The pulses and surges of LH decreased during ACTH treatment, but FSH profiles were similar to those in controls and persistent or prolonged follicles were eventually observed in all heifers. In five heifers, prolonged dominant follicles ovulated after 10 days, whereas in six heifers, persistent follicular structures were present for 20 days, but ceased to secrete oestradiol after approximately 12 days. In the heifers with persistent follicular structures, new follicles emerged when the persistent follicle became non-oestrogenic. During the last 2 days of normal follicular growth, the concentration of oestradiol was greater than it was during prolonged or persistent follicle development (P < 0.05). There were no differences in the growth rates or maximum diameters of abnormal follicles that had different outcomes, but oestradiol concentrations were greater in prolonged follicles that ovulated compared with those follicles that persisted (P = 0.06). In conclusion, stimulation with ACTH resulted in a marked deviance from normal follicular activity. The aberrations were probably caused by the interruption of pulsatile secretion of LH (but not FSH) leading to decreased but prolonged oestradiol secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号