首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genotoxic potential of 42.2 +/- 0.2 GHz electromagnetic millimeter-wave radiation was investigated in adult male BALB/c mice. The radiation was applied to the nasal region of the mice for 30 min/day for 3 consecutive days. The incident power density used was 31.5 +/- 5.0 mW/cm2. The peak specific absorption rate was calculated as 622 +/- 100 W/kg. Groups of mice that were injected with cyclophosphamide (15 mg/kg body weight), a drug used in the treatment of human malignancies, were also included to determine if millimeter-wave radiation exposure had any influence on drug-induced genotoxicity. Concurrent sham-exposed and untreated mice were used as controls. The extent of genotoxicity was assessed from the incidence of micronuclei in polychromatic erythrocytes of peripheral blood and bone marrow cells collected 24 h after treatment. The results indicated that the incidence of micronuclei in 2000 polychromatic erythrocytes was not significantly different among untreated, millimeter wave-exposed, and sham-exposed mice. The group mean incidences were 6.0 +/- 1.6, 5.1 +/- 1.5 and 5.1 +/- 1.3 in peripheral blood and 9.1 +/- 1.1, 9.3 +/- 1.6 and 9.1 +/- 1.6 in bone marrow cells, respectively. Mice that were injected with cyclophosphamide exhibited significantly increased numbers of micronuclei, 14.6 +/- 2.7 in peripheral blood and 21.3 +/- 3.9 in bone marrow cells (P< 0.0001). The drug-induced micronuclei were not significantly different in millimeter wave-exposed and sham-exposed mice; the mean incidences were 14.3 +/- 2.8 and 15.4 +/- 3.0 in peripheral blood and 23.5 +/- 2.3 and 22.1 +/- 2.5 in bone marrow cells, respectively. Thus there was no evidence for the induction of genotoxicity in the peripheral blood and bone marrow cells of mice exposed to electromagnetic millimeter-wave radiation. Also, millimeter-wave radiation exposure did not influence cyclophosphamide-induced micronuclei in either type of cells.  相似文献   

2.
The purpose of this study was to determine whether long-term exposure to a 1.6 GHz radiofrequency (RF) field would affect the incidence of cancer in Fischer 344 rats. Thirty-six timed-pregnant rats were randomly assigned to each of three treatment groups: two groups exposed to a far-field RF Iridium signal and a third group that was sham exposed. Exposures were chosen such that the brain SAR in the fetuses was 0.16 W/kg. Whole-body far-field exposures were initiated at 19 days of gestation and continued at 2 h/day, 7 days/week for dams and pups after parturition until weaning (approximately 23 days old). The offspring (700) of these dams were selected, 90 males and 90 females for each near-field treatment group, with SAR levels in the brain calculated to be as follows: (1) 1.6 W/kg, (2) 0.16 W/kg and (3) near-field sham controls, with an additional 80 males and 80 females as shelf controls. Confining, head-first, near-field exposures of 2 h/day, 5 days/week were initiated when the offspring were 36 +/- 1 days old and continued until the rats were 2 years old. No statistically significant differences were observed among treatment groups for number of live pups/litter, survival index, and weaning weights, nor were there differences in clinical signs or neoplastic lesions among the treatment groups. The percentages of animals surviving at the end of the near-field exposure were not different among the male groups. In females a significant decrease in survival time was observed for the cage control group.  相似文献   

3.
Peripheral blood samples collected from four healthy nonsmoking human volunteers were diluted with tissue culture medium and exposed in vitro for 24 h to 847.74 MHz radiofrequency (RF) radiation (continuous wave), a frequency employed for cellular telephone communications. A code division multiple access (CDMA) technology was used with a nominal net forward power of 75 W and a nominal power density of 950 W/m(2) (95 mW/cm(2)). The mean specific absorption rate (SAR) was 4.9 or 5.5 W/kg. Blood aliquots that were sham-exposed or exposed in vitro to an acute dose of 1.5 Gy of gamma radiation were included in the study as controls. The temperatures of the medium during RF-radiation and sham exposures in the Radial Transmission Line facility were controlled at 37 +/- 0.3 degrees C. Immediately after the exposures, lymphocytes were cultured at 37 +/- 1 degrees C for 48 or 72 h. The extent of genetic damage was assessed from the incidence of chromosome aberrations and micronuclei. The kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation-exposed and sham-exposed lymphocytes with respect to mitotic indices, frequencies of exchange aberrations, excess fragments, binucleate cells, and micronuclei. The response of gamma-irradiated lymphocytes was significantly different from that of both RF-radiation-exposed and sham-exposed cells for all of these indices. Thus there was no evidence for induction of chromosome aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 847.74 MHz RF radiation (CDMA) at SARs of 4.9 or 5.5 W/kg.  相似文献   

4.
Peripheral blood samples collected from healthy human volunteers were exposed in vitro to 2.45 GHz or 8.2 GHz pulsed-wave radiofrequency (RF) radiation. The net forward power, average power density, mean specific absorption rate, and the temperature maintained during the 2-h exposure of the cells to 2.45 GHz or 8.2 GHz were, respectively, 21 W or 60 W, 5 mW/cm(2) or 10 mW/cm(2), 2.13 W/kg or 20.71 W/kg, and 36.9 +/- 0.1 degrees C or 37.5 +/- 0.2 degrees C. Aliquots of the same blood samples that were either sham-exposed or exposed in vitro to an acute dose of 1.5 Gy gamma radiation were used as unexposed and positive controls, respectively. Cultured lymphocytes were examined to determine the extent of cytogenetic damage assessed from the incidence of chromosomal aberrations and micronuclei. Under the conditions used to perform the experiments, the levels of damage in RF-radiation-exposed and sham-exposed lymphocytes were not significantly different. Also, there were no significant differences in the response of unstimulated lymphocytes and lymphocytes stimulated with phytohemagglutinin when exposed to 8.2 GHz RF radiation. In contrast, the positive control cells that had been subjected to gamma irradiation exhibited significantly more damage than RF-radiation- and sham-exposed lymphocytes.  相似文献   

5.
Micronucleus induction after whole-body microwave irradiation of rats   总被引:4,自引:0,他引:4  
Adult male Wistar rats were exposed for 2 h a day, 7 days a week for up to 30 days to continuous 2,450 MHz radiofrequency microwave (rf/MW) radiation at a power density of 5-10 mW/cm(2). Sham-exposed rats were used as controls. After ether anesthesia, experimental animals were euthanized on the final irradiation day for each treated group. Peripheral blood smears were examined for the extent of genotoxicity, as indicated by the presence of micronuclei in polychromatic erythrocytes (PCEs). The results for the time-course of PCEs indicated significant differences (P<0.05) for the 2nd, the 8th and the 15th day between control and treated subgroups of animals. Increased influx of immature erythrocytes into the peripheral circulation at the beginning of the experiment revealed that the proliferation and maturation of nucleated erythropoietic cells were affected by exposure to the 2,450 MHz radiofrequency radiation. Such findings are indicators of radiation effects on bone-marrow erythropoiesis and their subsequent effects in circulating red cells. The incidence of micronuclei/1,000 PCEs in peripheral blood was significantly increased (P<0.05) in the subgroup exposed to rf/MW radiation after eight irradiation treatments of 2 h each in comparison with the sham-exposed control group. It is likely that an adaptive mechanism, both in erythrocytopoiesis and genotoxicity appeared in the rat experimental model during the subchronic irradiation treatment.  相似文献   

6.
To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.  相似文献   

7.
Wistar rats (70 days old) were exposed for 2 h a day for 45 days continuously at 10 GHz [power density 0.214 mW/cm2, specific absorption rate (SAR) 0.014 W/kg] and 50 GHz (power density 0.86 microW/cm2, SAR 8.0 x10(-4) W/kg). Micronuclei (MN), reactive oxygen species (ROS), and antioxidant enzymes activity were estimated in the blood cells and serum. These radiations induce micronuclei formation and significant increase in ROS production. Significant changes in the level of serum glutathione peroxidase, superoxide dismutase and catalase were observed in exposed group as compared with control group. It is concluded that microwave exposure can be affective at genetic level. This may be an indication of tumor promotion, which comes through the overproduction of reactive oxygen species.  相似文献   

8.
Adult male Wistar rats were exposed for 2 h a day, 7 days a week for up to 30 days to continuous 2450 MHz radiofrequency microwave (rf/MW) radiation at a power density of 5–10 mW/cm2. Sham-exposed rats were used as controls. After ether anesthesia, experimental animals were euthanized on the final irradiation day for each treated group. Peripheral blood smears were examined for the extent of genotoxicity, as indicated by the presence of micronuclei in polychromatic erythrocytes (PCEs). The results for the time-course of PCEs indicated significant differences (P<0.05) for the 2nd, the 8th and the 15th day between control and treated subgroups of animals. Increased influx of immature erythrocytes into the peripheral circulation at the beginning of the experiment revealed that the proliferation and maturation of nucleated erythropoietic cells were affected by exposure to the 2450 MHz radiofrequency radiation. Such findings are indicators of radiation effects on bone-marrow erythropoiesis and their subsequent effects in circulating red cells. The incidence of micronuclei/1000 PCEs in peripheral blood was significantly increased (P<0.05) in the subgroup exposed to rf/MW radiation after eight irradiation treatments of 2 h each in comparison with the sham-exposed control group. It is likely that an adaptive mechanism, both in erythrocytopoiesis and genotoxicity appeared in the rat experimental model during the subchronic irradiation treatment.  相似文献   

9.
In an 18-month carcinogenicity study, Pim1 transgenic mice were exposed to pulsed 900 MHz (pulse width: 0.577 ms; pulse repetition rate: 217 Hz) radiofrequency (RF) radiation at a whole-body specific absorption rate (SAR) of 0.5, 1.4 or 4.0 W/kg [uncertainty (k = 2): 2.6 dB; lifetime variation (k = 1): 1.2 dB]. A total of 500 mice, 50 per sex per group, were exposed, sham-exposed or used as cage controls. The experiment was an extension of a previously published study in female Pim1 transgenic mice conducted by Repacholi et al. (Radiat. Res. 147, 631-640, 1997) that reported a significant increase in lymphomas after exposure to the same 900 MHz RF signal. Animals were exposed for 1 h/day, 7 days/week in plastic tubes similar to those used in inhalation studies to obtain well-defined uniform exposure. The study was conducted blind. The highest exposure level (4 W/kg) used in this study resulted in organ-averaged SARs that are above the peak spatial SAR limits allowed by the ICNIRP (International Commission on Non-ionizing Radiation Protection) standard for environmental exposures. The whole-body average was about three times greater than the highest average SAR reported in the earlier study by Repacholi et al. The results of this study do not suggest any effect of 217 Hz-pulsed RF-radiation exposure (pulse width: 0.577 ms) on the incidence of tumors at any site, and thus the findings of Repacholi et al. were not confirmed. Overall, the study shows no effect of RF radiation under the conditions used on the incidence of any neoplastic or non-neoplastic lesion, and thus the study does not provide evidence that RF radiation possesses carcinogenic potential.  相似文献   

10.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

11.
An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.  相似文献   

12.
Aiming to investigate the possibility of electromagnetic fields (EMF) developed by nonionizing radiation to be a noxious agent capable of inducing genotoxicity to humans, in the current study we have investigated the effect of 910-MHz EMF in rat bone marrow. Rats were exposed daily for 2 h over a period of 30 consecutive days. Studying bone marrow smears from EMF-exposed and sham-exposed animals, we observed an almost threefold increase of micronuclei (MN) in polychromatic erythrocytes (PCEs) after EMF exposure. An induction of MN was also observed in polymorphonuclear cells. The induction of MN in female rats was less than that in male rats. The results indicate that 910-MHz EMF could be considered as a noxious agent capable of producing genotoxic effects.  相似文献   

13.
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

14.
The auditory system is the first biological structure facing the electromagnetic fields emitted by mobile phones. The aim of this study was to evaluate the cochlear functionality of Sprague-Dawley rats exposed to electromagnetic fields at the typical frequencies of GSM mobile phones (900 and 1800 MHz) by distortion product otoacoustic emissions, which are a well-known indicator of the status of the cochlea's outer hair cells. A population of 48 rats was divided into exposed and sham-exposed groups. Three sets of four loop antennas, one for sham-exposed animals and two for exposed animals, were used for the local exposures. Rats were exposed 2 h/day, 5 days/week for 4 weeks at a local SAR of 2 W/kg in the ear. Distortion product otoacoustic emissions tests were carried out before, during and after the exposure. The analysis of the data shows no statistically significant differences between the audiological signals recorded for the different groups.  相似文献   

15.
The aim of this study was to explore whether, during the course of a 15 days-lasting experiment, a two hours per day and five days per week, 2.45 GHz microwave whole-body irradiation may substantially and therefore provably affect rats’ nocturnal urinary 6-hydroxy-melatonin sulphate (aMT6s) excretion and urinalysis parameters. The average whole-body specific absorption rate (SAR) equalled to 1.25 (± 0.36 SE) W/kg. To collect nocturnal urine samples, animals were held in individual metabolic cages every experimental night from 7:00 PM till 7:00 AM next day. The concentration of aMT6s in rat urine samples was determined by a direct radioimmunoassay. Bilirubin, ketones, and urine protein content have been determined via multiple-use reagent strips. In comparison to the sham-exposed group, no significant changes in body temperature and food or water intake were observed in the exposed group. A decline in aMT6s, determined in the exposed rats, was observed from day 8 to day 11 of the experiment (P < 0.05). The aMT6s level remained consistently low until the end of the experiment, but not significantly lower than the control values. The results of the urine samples biochemical workup failed to reveal any significant differences between the exposed and the control animal groups. The results of this study suggest that, under the above described experimental conditions, repeated 2.45 GHz irradiation could act as a stressor and therefore influence the melatonine balance in rat.  相似文献   

16.
Exposure of humans and rodents to radiofrequency (RF) cell phone fields has been reported to alter a number of stress- related parameters. To study this potential relationship in more detail, tube-restrained immobilized Fischer 344 rats were exposed in the near field in a dose-dependent manner to pulse-modulated (11 packets/s) digital cell phone microwave fields at 1.6 GHz in accordance with the Iridium protocol. Core body temperatures, plasma levels of the stress-induced hormones adrenocorticotrophic hormone (ACTH) and corticosterone, and brain levels of ornithine decarboxylase (Odc), Fos and Jun mRNAs were measured as potential markers of stress responses mediated by RF radiation. We tested the effects of the loose-tube immobilization with and without prior conditioning throughout a 2-h period (required for near-field head exposure to RF fields), on core body temperature, plasma ACTH and corticosteroids. Core body temperature increased transiently (+/-0.3 degrees C) during the initial 30 min of loose-tube restraint in conditioned animals. When conditioned/tube-trained animals were followed as a function of time after immobilization, both the ACTH and corticosterone levels were increased by nearly 10-fold. For example, within 2-3 min, ACTH increased to 83.2 +/- 31.0 pg/dl, compared to 28.1 +/- 7.7 pg/dl for cage controls, reaching a maximum at 15-30 min (254.6 +/- 46.8 pg/dl) before returning to near resting levels by 120 min (31.2 +/- 10.2 pg/dl). However, when non-tube-trained animals were submitted to loose-tube immobilization, these animals demonstrated significantly higher (3-10-fold greater) hormone levels at 120 min than their tube-trained counterparts (313.5 +/- 54.8 compared to 31.2 +/- 10.2 pg/dl; corticosterone, 12.2 +/- 6.2 microg/dl compared to 37.1 +/- 6.4 microg/dl). Hormone levels in exposed animals were also compared to those in swim-stressed animals. Swimming stress also resulted in marked elevation in both ACTH and corticosterone levels, which were 10-20 fold higher (541.8 compared to 27.2-59.1 pg/dl for ACTH) and 2-5 fold higher (45.7 compared to 8.4- 20.0 microg/dl for corticosteroids) than the cage control animals. Three time-averaged brain SAR levels of 0.16, 1.6 and 5 W/ kg were tested in a single 2-h RF-field exposure to the Iridium cell phone field. When RF-exposed and sham-exposed (immobilized) animals were compared, no differences were seen in core body temperature, corticosterone or ACTH that could be attributed to near-field RF radiation. Levels of Odc, Fos and Jun mRNA were also monitored in brains of animals exposed to the RF field for 2 h, and they showed no differences from sham-exposed (loose-tube immobilized) animals that were due to RF-field exposure. These data suggest that a significant stress response, indicated by a transient increase in core body temperature, ACTH and corticosterone, occurred in animals placed in even the mild loose-tube immobilization required for near-field RF exposure employed here and in our other studies. Failure to adequately characterize and control this immobilization response with appropriate cage control animals, as described previously, could significantly mask any potential effects mediated by the RF field on these and other stress-related parameters. We conclude that the pulse-modulated digital Iridium RF field at SARs up to 5 W/kg is incapable of altering these stress-related responses. This conclusion is further supported by our use of an RF-field exposure apparatus that minimized immobilization stress; the use of conditioned/tube-trained animals and the measurement of hormonal and molecular markers after 2 h RF-field exposure when the stress-mediated effects were complete further support our conclusion.  相似文献   

17.
This study was designed to determine whether chronic exposure to radiofrequency (RF) radiation from cellular phones increased the incidence of spontaneous tumors in F344 rats. Eighty male and 80 female rats were randomly placed in each of three irradiation groups. The sham group received no irradiation; the Frequency Division Multiple Access (FDMA) group was exposed to 835.62 MHz FDMA RF radiation; and the Code Division Multiple Access (CDMA) group was exposed to 847.74 MHz CDMA RF radiation. Rats were irradiated 4 h per day, 5 days per week over 2 years. The nominal time-averaged specific absorption rate (SAR) in the brain for the irradiated animals was 0.85 +/- 0.34 W/kg (mean +/- SD) per time-averaged watt of antenna power. Antennas were driven with a time-averaged power of 1.50 +/- 0.25 W (range). That is, the nominal time-averaged brain SAR was 1.3 +/- 0.5 W/kg (mean +/- SD). This number was an average from several measurement locations inside the brain, and it takes into account changes in animal weight and head position during irradiation. All major organs were evaluated grossly and histologically. The number of tumors, tumor types and incidence of hyperplasia for each organ were recorded. There were no significant differences among final body weights or survival days for either males or females in any group. No significant differences were found between treated and sham-exposed animals for any tumor in any organ. We conclude that chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA RF radiation had no significant effect on the incidence of spontaneous tumors in F344 rats.  相似文献   

18.
The objective of this study was to investigate the effects of radiofrequency radiation emitted from cellular phones on: (1) trace elements such as manganese, iron, copper, zinc, (2) T1 relaxation times in serum, and (3) rectal temperature of rats exposed to microwave radiation emitted from cellular phones. Sixteen Spraque–Dawley rats were separated into two groups of eight, one sham-exposed (control) and one exposed (experimental). The rats were confined in Plexiglas cages and a cellular phone was placed 0.5 cm under the cage. For the experimental group, cellular phones were activated 20 min per day, 7 days a week, for 1 month. For the control group, a cellular phone placed beneath the cage for 20 min a day was turned off. Rectal temperatures were measured weekly. For 250-mW-radiated powers, the whole body average specified absorption rate (SAR) (rms) is 0.52 W/kg and 1-g-averaged peak SAR (rms) is 3.13 W/kg. The Mann-Whitney U test was used for statistical comparisons of groups. T1 relaxation time and the values of iron and copper in the serum of the experimental group were not changed compared to the control group (p > 0.05). However, manganese and zinc values in the serum of the experimental group were significantly different from the control group (p < 0.05). The difference in rectal temperature measured before and after exposure in the experimental groups was not statistically different from control (p > 0.05).  相似文献   

19.
The protective effects of carnosine as a natural dipeptide were investigated in mouse bone marrow cells against genotoxicity induced by cyclophosphamide. Mice were injected with solutions of carnosine at three different doses (10, 50 and 100?mg kg(-1) bw) for five consecutive days. On the fifth day of treatment, mice were injected cyclophosphamide and killed after 24?h. The frequency of micronuclei in polychromatic erythrocytes and the ratio of polychromatic erythrocyte/polychromatic erythrocyte?+?normochromatic erythrocyte [PCE/(PCE?+?NCE)] were evaluated by May-Grunwald/Giemsa staining. Histopathology of bone marrow was examined in mice treated with cyclophosphamide and carnosine. Carnosine significantly reduced micronucleated polychromatic erythrocytes (MnPCEs) induced by cyclophosphamide at all three doses. Carnosine at dose of 100?mg kg(-1) bw reduced MnPCEs 3.76-fold and completely normalized the PCE/(PCE?+?NCE) ratio. Administration of carnosine inhibited bone marrow toxicity induced by cyclophosphamide. It appeared that carnosine with protective activity reduced the oxidative stress and genotoxicity induced by cyclophosphamide in bone marrow cells of mice. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The current study extends our previous investigations of 2-h radiofrequency (RF)-field exposures on genotoxicity in human blood cell cultures by examining the effect of 24-h continuous-wave (CW) and pulsed-wave (PW) 1.9 GHz RF-field exposures on both primary DNA damage and micronucleus induction in human leukocyte cultures. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures was maintained at 37.0 +/- 1.0 degrees C for the duration of the 24-h exposure period. No significant differences in primary DNA damage were observed between the sham-treated controls and any of the CW or PW 1.9 GHz RF-field-exposed cultures when processed immediately after the exposure period by the alkaline comet assay. Similarly, no significant differences were observed in the incidence of micronuclei, incidence of micronucleated binucleated cells, frequency of binucleated cells, or proliferation index between the sham-treated controls and any of the CW or PW 1.9 GHz RF-field-exposed cultures. In conclusion, the current study found no evidence of 1.9 GHz RF-field-induced genotoxicity in human blood cell cultures after a 24-h exposure period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号