首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have shown that Rho and Rho-activated kinase (ROCK) may become activated by high-millimolar KCl, which had previously been widely assumed to act solely through opening of voltage-dependent Ca(2+) channels. In this study, we explored in more detail the relationship between membrane depolarization, Ca(2+) currents, and activation of Rho/ROCK in bovine tracheal smooth muscle. Ca(2+) currents began to activate at membrane voltages more positive than -40 mV and were maximally activated above 0 mV; at the same time, these underwent time- and voltage-dependent inactivation. Depolarizing intact tissues by KCl challenge evoked contractions that were blocked equally, and in a nonadditive fashion, by nifedipine or by the ROCK inhibitor Y-27632. Other agents that elevate intracellular calcium concentration ([Ca(2+)](i)) by pathways independent of G protein-coupled receptors, namely the SERCA-pump inhibitor cyclopiazonic acid and the Ca(2+) ionophore A-23187, evoked contractions that were also largely reduced by Y-27632. KCl directly increased Rho and ROCK activities in a concentration-dependent fashion that paralleled closely the effect of KCl on tone and [Ca(2+)](i), as well as the voltage-dependent Ca(2+) currents that were measured over the voltage ranges that are evoked by 0-120 mM KCl. Through the use of various pharmacological inhibitors, we ruled out roles for Ca(2+)/calmodulin-dependent CaM kinase II, protein kinase C, and protein kinase A in mediating the KCl-stimulated changes in tone and Rho/ROCK activities. In conclusion, Rho is activated by elevation of [Ca(2+)](i) (although the signal transduction pathway underlying this Ca(2+) dependence is still unclear) and possibly also by membrane depolarization per se.  相似文献   

2.
Hyperosmotic stress induces the rapid formation of phosphatidic acid (PA) in Chlamydomonas moewusii via the activation of two signalling pathways: phospholipase D (PLD) and phospholipase C (PLC), the latter in combination with diacylglycerol kinase (DGK) (Munnik et al., 2000). A concomitant increase in cell Ca(2+) becomes manifest as deflagellation. When KCl was used as osmoticum we found that two concentration ranges activated deflagellation: one between 50 and 100 mm and another above 200 mm. Deflagellation in low KCl concentrations was complete within 30 sec whereas in high concentrations it took 5 min. PLC was not activated, as it was by high KCl concentrations that cause hyperosmotic stress. Moreover PLD was activated more strongly by low than by high KCl concentrations. Potassium was the most potent monovalent cation based on the induction of deflagellation and the formation of PA and PBut. During treatment, the external medium acidified, indicating an increase in H(+)-ATPase activity in order to re-establish the membrane potential. Activation of PLD and deflagellation at low KCl concentrations were abrogated by treatment with La(3+), Gd(3+) and EGTA, indicating the dependency on extracellular Ca(2+). This suggests that low concentrations of KCl depolarize the plasma membrane, resulting in the activation of H(+)-ATPases and opening voltage-dependent Ca(2+) +/- channels, observed as deflagellation and an increase in PLD activity.  相似文献   

3.
4.
5.
A rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) is required to activate sperm of all organisms studied. Such elevation of [Ca(2+)](i) can occur either by influx of extracellular Ca(2+) or by release of Ca(2+) from intracellular stores. We have examined these sources of Ca(2+) in sperm from the sea squirt Ascidia ceratodes using mitochondrial translocation to evaluate activation and the Ca(2+)-sensitive dye fura-2 to monitor [Ca(2+)](i) by bulk spectrofluorometry. Sperm activation artificially evoked by incubation in high-pH seawater was inhibited by reducing seawater [Ca(2+)], as well as by the presence of high [K(+)](o) or the Ca channel blockers pimozide, penfluridol, or Ni(2+), but not nifedipine or Co(2+). The accompanying rise in [Ca(2+)](i) was also blocked by pimozide or penfluridol. These results indicate that activation produced by alkaline incubation involves opening of plasmalemmal voltage-dependent Ca channels and Ca(2+) entry to initiate mitochondrial translocation. Incubation in thimerosal or thapsigargin, but not ryanodine (even if combined with caffeine pretreatment), evoked sperm activation. Activation by thimerosal was insensitive to reduced external calcium and to Ca channel blockers. Sperm [Ca(2+)](i) increased upon incubation in high-pH or thimerosal-containing seawater, but only the high-pH-dependent elevation in [Ca(2+)](i) could be inhibited by pimozide or penfluridol. Treatment with the protonophore CCCP indicated that only a small percentage of sperm could release enough Ca(2+) from mitochondria to cause activation. Inositol 1,4,5-trisphosphate (IP(3)) delivered by liposomes or by permeabilization increased sperm activation. Both of these effects were blocked by heparin. We conclude that high external pH induces intracellular alkalization that directly or indirectly activates plasma membrane voltage-dependent Ca channels allowing entry of external Ca(2+) and that thimerosal stimulates release of Ca(2+) from IP(3)-sensitive intracellular stores.  相似文献   

6.
The role of Ca(2+) mobilization from intracellular stores and Ca(2+)-activated Cl(-) channels in caffeine- and histamine-induced depolarization and contraction of the rabbit middle cerebral artery has been studied by recording membrane potential and isometric force. Caffeine induced a transient contraction and a transient followed by sustained depolarization. The transient depolarization was abolished by ryanodine, DIDS, and niflumic acid, suggesting involvement of Ca(2+)-activated Cl(-) channels. Histamine-evoked transient contraction in Ca(2+)-free solution was abolished by ryanodine or by caffeine-induced depletion of Ca(2+) stores. Ryanodine slowed the development of depolarization induced by histamine in Ca(2+)-containing solution but did not affect its magnitude. In arteries treated with 1 mM Co(2+), histamine elicited a transient depolarization and contraction, which was abolished by ryanodine. DIDS and niflumic acid reduced histamine-evoked depolarization and contraction. Histamine caused a sustained depolarization and contraction in low-Cl(-) solution. These results suggest that Ca(2+) mobilization from ryanodine-sensitive stores is involved in histamine-induced initial, but not sustained, depolarization and contraction. Ca(2+)-activated Cl(-) channels contribute mainly to histamine-induced initial depolarization and less importantly to sustained depolarization, which is most likely dependent on activation of nonselective cation channels.  相似文献   

7.
1. Both the Ca(2+)-pump ATPase and the polyphosphoinositide phosphodiesterase of the erythrocyte membrane can, when assayed under appropriate conditions, be activated by Ca(2+) in the micromolar range. We have therefore compared the mechanisms and affinities for Ca(2+) activation of the two enzymes in human erythrocyte membranes, to see whether the polyphosphoinositide phosphodiesterase would be active in normal healthy erythrocytes. 2. At physiological ionic strength and in the presence of calmodulin, the Ca(2+)-pump ATPase was activated by Ca(2+) in a highly co-operative manner, with half-maximal activation occurring at about 0.3mum-Ca(2+). At an optimal Ca(2+) concentration, calmodulin stimulated the Ca(2+)-sensitive ATPase activity about 10-fold. 3. Ca(2+) activated the polyphosphoinositide phosphodiesterase in a non-co-operative manner. The Ca(2+) requirements for breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were identical, which supports our previous conclusion that Ca(2+) activates a single polyphosphoinositide phosphodiesterase that degrades both lipids with equal facility. Added calmodulin did not affect the activity of the polyphosphoinositide phosphodiesterase. 4. At low ionic strength in the absence of Mg(2+), half-maximal activation of the phosphodiesterase was at about 3mum-Ca(2+). The presence of 1mm-Mg(2+) shifted the Ca(2+) activation curve to the right, as did elevation of the ionic strength. When the Ca(2+)-pump ATPase and the polyphosphoinositide phosphodiesterase were assayed in the same incubations and under conditions of intracellular ionic strength and Mg(2+) concentration, the ATPase was fully activated at 3mum-Ca(2+), whereas no polyphosphoinositide phosphodiesterase activity was detected below 100mum-Ca(2+). 5. The Ca(2+)-pump ATPase of the erythrocyte membrane normally maintains the Ca(2+) concentration of healthy erythrocytes below approx. 0.1mum. It therefore seems unlikely that the polyphosphoinositide phosphodiesterase of the erythrocyte membrane ever expresses its activity in a healthy erythrocyte.  相似文献   

8.
We previously identified glucose-6-phosphate dehydrogenase (G6PD) as a regulator of vascular smooth muscle contraction. In this study, we tested our hypothesis that G6PD activated by KCl via a phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-protein kinase C (PKC) pathway increases vascular smooth muscle contraction and that inhibition of G6PD relaxes smooth muscle by decreasing intracellular Ca(2+) ([Ca(2+)](i)) and Ca(2+) sensitivity to the myofilament. Here we show that G6PD is activated by membrane depolarization via PKC and PTEN pathway and that G6PD inhibition decreases intracellular free calcium ([Ca(2+)](i)) in vascular smooth muscle cells and thus arterial contractility. In bovine coronary artery (CA), KCl (30 mmol/l) increased PKC activity and doubled G6PD V(max) without affecting K(m). KCl-induced PKC and G6PD activation was inhibited by bisperoxo(pyridine-2-carboxyl)oxovanadate (Bpv; 10 μmol/l), a PTEN inhibitor, which also inhibited (P < 0.05) KCl-induced CA contraction. The G6PD blockers 6-aminonicotinamide (6AN; 1 mmol/l) and epiandrosterone (EPI; 100 μmol/l) inhibited KCl-induced increases in G6PD activity, [Ca(2+)](i), Ca(2+)-dependent myosin light chain (MLC) phosphorylation, and contraction. Relaxation of precontracted CA by 6AN and EPI was not blocked by calnoxin (10 μmol/l), a plasma membrane Ca(2+) ATPase inhibitor or by lowering extracellular Na(+), which inhibits the Na(+)/Ca(2+) exchanger (NCX), but cyclopiazonic acid (200 μmol/l), a sarcoplasmic reticulum Ca(2+) ATPase inhibitor, reduced (P < 0.05) 6AN- and EPI-induced relaxation. 6AN also attenuated phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Ser855, a site phosphorylated by Rho kinase, inhibition of which reduced (P < 0.05) KCl-induced CA contraction and 6AN-induced relaxation. By contrast, 6AN increased (P < 0.05) vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239, indicating that inhibition of G6PD increases PKA or PKG activity. Inhibition of PKG by RT-8-Br-PET-cGMPs (100 nmol/l) diminished 6AN-evoked VASP phosphorylation (P < 0.05), but RT-8-Br-PET-cGMPs increased 6AN-induced relaxation. These findings suggest G6PD inhibition relaxes CA by decreasing Ca(2+) influx, increasing Ca(2+) sequestration, and inhibiting Rho kinase but not by increasing Ca(2+) extrusion or activating PKG.  相似文献   

9.
We have recently shown that in PC12 cells, pituitary adenylate cyclase-activating polypeptide (PACAP) and NGF synergistically stimulate PACAP mRNA expression primarily via a mechanism involving a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Here we have analyzed p38 MAPK activation by PACAP and the mechanism underlying this action of PACAP in PC12 cells. PACAP increased phosphorylation of p38 MAPK with a bell-shaped dose-response relationship and a maximal effect was obtained at 10(-8) M. PACAP (10(-8) M)-induced p38 MAPK phosphorylation was already evident at 2.5 min, maximal at 5 min, and rapidly declined thereafter. PACAP-induced p38 MAPK phosphorylation was potently inhibited by depletion of Ca(2+) stores with thapsigargin and partially inhibited by the phospholipase C inhibitor U-73122, L-type voltage-dependent calcium channel inhibitors nifedipine and nimodipine, and the Ca(2+) chelator EGTA, whereas the protein kinase C inhibitor calphostin C, the protein kinase A inhibitor H-89, the cAMP antagonist Rp-cAMP, and the nonselective cation channel blocker SKF96365 had no effect. These results indicate that PACAP activates p38 MAPK in PC12 cells through activation of a phospholipase C, mobilization of intracellular Ca(2+) stores, and Ca(2+) influx through voltage-dependent Ca(2+) channels, but not cyclic AMP-dependent mechanisms.  相似文献   

10.
Phosphoinositide (3,5)-bisphosphate [PI(3,5)P(2)] is a newly identified phosphoinositide that modulates intracellular Ca(2+) by activating ryanodine receptors (RyRs). Since the contractile state of arterial smooth muscle depends on the concentration of intracellular Ca(2+), we hypothesized that by mobilizing sarcoplasmic reticulum (SR) Ca(2+) stores PI(3,5)P(2) would increase intracellular Ca(2+) in arterial smooth muscle cells and cause vasocontraction. Using immunohistochemistry, we found that PI(3,5)P(2) was present in the mouse aorta and that exogenously applied PI(3,5)P(2) readily entered aortic smooth muscle cells. In isolated aortic smooth muscle cells, exogenous PI(3,5)P(2) elevated intracellular Ca(2+), and it also contracted aortic rings. Both the rise in intracellular Ca(2+) and the contraction caused by PI(3,5)P(2) were prevented by antagonizing RyRs, while the majority of the PI(3,5)P(2) response was intact after blockade of inositol (1,4,5)-trisphosphate receptors. Depletion of SR Ca(2+) stores with thapsigargin or caffeine and/or ryanodine blunted the Ca(2+) response and greatly attenuated the contraction elicited by PI(3,5)P(2). The removal of extracellular Ca(2+) or addition of verapamil to inhibit voltage-dependent Ca(2+) channels reduced but did not eliminate the Ca(2+) or contractile responses to PI(3,5)P(2). We also found that PI(3,5)P(2) depolarized aortic smooth muscle cells and that LaCl(3) inhibited those aspects of the PI(3,5)P(2) response attributable to extracellular Ca(2+). Thus, full and sustained aortic contractions to PI(3,5)P(2) required the release of SR Ca(2+), probably via the activation of RyR, and also extracellular Ca(2+) entry via voltage-dependent Ca(2+) channels.  相似文献   

11.
Depletion of intracellular Ca(2+) stores activates capacitative Ca(2+) influx in smooth muscle cells, but the native store-operated channels that mediate such influx remain unidentified. Recently we demonstrated that calcium influx factor produced by yeast and human platelets with depleted Ca(2+) stores activates small conductance cation channels in excised membrane patches from vascular smooth muscle cells (SMC). Here we characterize these channels in intact cells and present evidence that they belong to the class of store-operated channels, which are activated upon passive depletion of Ca(2+) stores. Application of thapsigargin (TG), an inhibitor of sarco-endoplasmic reticulum Ca(2+) ATPase, to individual SMC activated single 3-pS cation channels in cell-attached membrane patches. Channels remained active when inside-out membrane patches were excised from the cells. Excision of membrane patches from resting SMC did not by itself activate the channels. Loading SMC with BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid), which slowly depletes Ca(2+) stores without a rise in intracellular Ca(2+), activated the same 3-pS channels in cell-attached membrane patches as well as whole cell nonselective cation currents in SMC. TG- and BAPTA-activated 3-pS channels were cation-selective but poorly discriminated among Ca(2+), Sr(2+), Ba(2+), Na(+), K(+), and Cs(+). Open channel probability did not change at negative membrane potentials but increased significantly at high positive potentials. Activation of 3-pS channels did not depend on intracellular Ca(2+) concentration. Neither TG nor a variety of second messengers (including Ca(2+), InsP3, InsP4, GTPgammaS, cyclic AMP, cyclic GMP, ATP, and ADP) activated 3-pS channels in inside-out membrane patches. Thus, 3-pS nonselective cation channels are present and activated by TG or BAPTA-induced depletion of intracellular Ca(2+) stores in intact SMC. These native store-operated cation channels can account for capacitative Ca(2+) influx in SMC and can play an important role in regulation of vascular tone.  相似文献   

12.
Protein kinase D (PKD) regulates many diverse cellular functions in response to diacylglycerol. To monitor PKD signaling in live cells, we generated a genetically encoded fluorescent reporter for PKD activity, DKAR (D kinase activity reporter). DKAR expressed in mammalian cells undergoes reversible fluorescence resonance energy transfer changes upon activation and inhibition of endogenous PKD. Surprisingly, we find that agonist-evoked activation of PKD is driven not only by diacylglycerol production, but by Ca(2+). Furthermore, elevation of intracellular Ca(2+), in the absence of any other stimulus, is sufficient to activate PKD. Concurrent imaging of Ca(2+), diacylglycerol, and PKD activity reveals that thapsigargin-mediated elevation of intracellular Ca(2+) is closely followed by a robust increase in diacylglycerol production, in turn followed by PKD activation. The Ca(2+)-induced production of diacylglycerol and accompanying PKD activation is dependent on phospholipase C activity. These data reveal that Ca(2+) is a major contributor to the initiation of PKD signaling through positive feedback regulation of diacylglycerol production, unveiling a new mechanism in PKD activation.  相似文献   

13.
In a previous study, we demonstrated that parathyroid hormone (PTH) stimulates in rat duodenal cells (enterocytes) the phosphorylation and activity of extracellular signal-regulated mitogen-activated protein kinase (MAPK) isoforms ERK1 and ERK2. As PTH activates adenylyl cyclase (AC) and phospholipase C and increases intracellular Ca(2+) in these cells, in the present study we evaluated the involvement of cAMP, Ca(2+) and protein kinase C (PKC) on PTH-induced MAPK activation. We found that MAPK phosphorylation by the hormone did not depend on PKC activation. PTH response could, however, be mimicked by addition of forskolin (5-15 microM), an AC activator, or Sp-cAMP (50-100 microM), a cAMP agonist, and suppressed to a great extent by the AC inhibitor, compound Sq-22536 (0.2-0.4 mM) and the cAMP antagonist Rp-cAMP (0.2 mM). Removal of external Ca(2+) (EGTA 0.5 mM), chelation of intracellular Ca(2+) with BAPTA (5 microM), or blockade of L-type Ca(2+)-channels with verapamil (10 microM) significantly decreased PTH-activation of MAPK. Furthermore, a similar degree of phosphorylation of MAPK was elicited by the Ca(2+) mobilizing agent thapsigargin, the Ca(2+) ionophore A23187, ionomycin and membrane depolarization with high K(+). Inclusion of the calmodulin inhibitor fluphenazine (50 microM) did not prevent hormone effects on MAPK. Taken together, these results indicate that cAMP and Ca(2+) play a role upstream in the signaling mechanism leading to MAPK activation by PTH in rat enterocytes. As Ca(2+) and cAMP antagonists did not block totally PTH-induced MAPK phosphorylation, it is possible that linking of the hormone signal to the MAPK pathway may additionally involve Src, which has been previously shown to be rapidly activated by PTH. Of physiological significance, in agreement with the mitogenic role of the MAPK cascade, PTH increased enterocyte DNA synthesis, and this effect was blocked by the specific inhibitor of MAPK kinase (MEK) PD098059, indicating that hormone modulation of MAPK through these messenger systems stimulates duodenal cell proliferation.  相似文献   

14.
15.
The present study was designed to investigate the mechanism of action of low extracellular magnesium ion concentration ([Mg(2+)](o)) on isolated canine basilar arteries and single cerebral vascular smooth muscle cells from these arteries. Low-[Mg(2+)](o) medium (0-0.6 mM) produces endothelium-independent contractions in isolated canine basilar arteries in a concentration-dependent manner; the lower the concentration of [Mg(2+)](o), the stronger the contractions. The low-[Mg(2+)](o) medium-induced contractions are significantly attenuated by pretreatment of the arteries with low concentrations of either SB-203580, U-0126, PD-98059, genistein, or an Src homology 2 (SH2) domain inhibitor peptide. IC(50) levels obtained for these five antagonists are consistent with reported inhibitor constant (K(i)) values for these tyrosine kinase and mitogen-activated protein kinase (MAPK) antagonists. Low-[Mg(2+)](o) medium (0-0.6 mM) produces transient intracellular calcium ion concentration ([Ca(2+)](i)) peaks followed by a slow, sustained, and elevated plateau of [Ca(2+)](i) in primary single smooth muscle cells from canine basilar arteries. Low-[Mg(2+)](o) medium induces rapid and stable increases in [Ca(2+)](i); these increases are inhibited markedly in the presence of either SB-203580, U-0126, PD-98059, genistein or a SH2 domain inhibitor peptide. Several specific antagonists of known endogenously formed vasoconstrictors do not inhibit or attenuate either the low-[Mg(2+)](o)-induced contractions or the elevation of [Ca(2+)](i). The present study suggests that activation of several cellular signaling pathways, such as protein tyrosine kinases (including the Src family) and MAPK, appears to play important roles in low-[Mg(2+)](o)-induced contractions and the elevation of [Ca(2+)](i) in smooth muscle cells from canine basilar arteries.  相似文献   

16.
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.  相似文献   

17.
We recently showed that mouse semaphorin H (MSH), a secreted semaphorin molecule, acts as a chemorepulsive factor on sensory neurites. In this study, we found for the first time that MSH induces neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of Ras-mitogen-activated protein kinase (MAPK) signaling pathways between MSH and nerve growth factor (NGF) revealed that these pathways are crucial for MSH action as well as NGF. K-252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks), did not inhibit the action of MSH, suggesting that MSH action occurs via a different receptor than NGF. L- and N-types of voltage-dependent Ca(2+) channel blockers, diltiazem and omega-conotoxin, inhibited MSH-induced neurite outgrowth and MAPK phosphorylation in a Ca(2+)-dependent manner. A transient elevation in intracellular Ca(2+) level was observed upon MSH stimulation. These findings suggest that extracellular Ca(2+) influx, followed by activation of the Ras-MAPK signaling pathway, is required for MSH induced PC12 cell neurite outgrowth.  相似文献   

18.
Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT(1) antagonist losartan but not AT(2) antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca(2+) channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p(44/42) mitogen-activating protein kinase (MAPK(44/42)) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT(1) and AT(2) receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT(1) receptors at the SMC and involves multiple intracellular pathways, influx of Ca(2+), and activation of PKC, Rho kinase, and MAPK(44/42).  相似文献   

19.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

20.
In electrically excitable cells, membrane depolarization opens voltage-dependent Ca(2+) channels eliciting Ca(2+) influx, which plays an important role for the activation of protein kinase C (PKC). However, we do not know whether Ca(2+) influx alone can activate PKC. The present study was conducted to investigate the Ca(2+) influx-induced activation mechanisms for two classes of PKC, conventional PKC (cPKC; PKCalpha) and novel PKC (nPKC; PKCtheta), in insulin-secreting cells. We have demonstrated simultaneous translocation of both DsRed-tagged PKCalpha to the plasma membrane and green fluorescent protein (GFP)-tagged myristoylated alanine-rich C kinase substrate to the cytosol as a dual marker of PKC activity in response to depolarization-evoked Ca(2+) influx in the DsRed-tagged PKCalpha and GFP-tagged myristoylated alanine-rich C kinase substrate co-expressing cells. The result indicates that Ca(2+) influx can generate diacylglycerol (DAG), because cPKC is activated by Ca(2+) and DAG. We showed this in three different ways by demonstrating: 1) Ca(2+) influx-induced translocation of GFP-tagged C1 domain of PKCgamma, 2) Ca(2+) influx-induced translocation of GFP-tagged pleckstrin homology domain, and 3) Ca(2+) influx-induced translocation of GFP-tagged PKCtheta, as a marker of DAG production and/or nPKC activity. Thus, Ca(2+) influx alone via voltage-dependent Ca(2+) channels can generate DAG, thereby activating cPKC and nPKC, whose activation is structurally independent of Ca(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号