首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The symbiosis between hermatypic corals and their dinoflagellate endosymbionts, genus Symbiodinium, is based on carbon exchange. This symbiosis is disrupted by thermally induced coral bleaching, a stress response in which the coral host expels its algal symbionts as they become physiologically impaired. The disruption of the dissolved inorganic carbon (DIC) supply or the thermal inactivation of Rubisco have been proposed as sites of initial thermal damage that leads to the bleaching response. Symbiodinium possesses a highly unusual Form II ribulose bisphosphate carboxylase/oxygenase (Rubisco), which exhibits a lower CO2:O2 specificity and may be more thermally unstable than the Form I Rubiscos of other algae and land plants. Components of the CO2 concentrating mechanism (CCM), which supplies inorganic carbon for photosynthesis, may also be temperature sensitive. Here, we examine the ability of four cultured Symbiodinium strains to acquire and fix DIC across a temperature gradient. Surprisingly, the half-saturation constant of photosynthesis with respect to DIC concentration (K P), an index of CCM function, declined with increasing temperature in three of the four strains, indicating a greater potential for photosynthetic carbon acquisition at elevated temperatures. In the fourth strain, there was no effect of temperature on K P. Finding no evidence for thermal inhibition of the CCM, we conclude that CCM components are not likely to be the primary sites of thermal damage. Reduced photosynthetic quantum yields, a hallmark of thermal bleaching, were observed at low DIC concentrations, leaving open the possibility that reduced inorganic carbon availability is involved in bleaching.  相似文献   

3.
Fucus serratus L., Fucus spiralis L., and Fucus vesiculosus L. (Fucales, Phaeophyceae) as well as Laminaria digitata (Huds.) Lamour., Laminaria hyperborea (Gunn.) Fosl., and Laminaria saccharina (L.) Lamour. (Laminariales, Phaeophyceae) have been investigated for the distribution of enzymic CO2 fixation capacities via phosphoenolpyruvate carboxykinase (EC 4.1.1.32) (PEP-CK) and via ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) (RubP-C) in different regions of the thalli. The maximum of PEP-CK activity is found to be confined to the growing regions of the algae, while the activity of RubP-C achieves its highest values in the entirely differentiated parts of the fronds. These findings are confirmed by the results of photosynthetic and light-independent (dark) carbon assimilation as determined by in vivo 14CO2 fixation. The physiological significance of these differential patterns of carboxylation patterns is discussed with respect to the ontogenetic stage and the chemical constitution of the different thallus parts.  相似文献   

4.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.  相似文献   

5.
Chloroplasts and mitochondria are traditionally considered to be autonomous organelles but they are not as independent as they were once thought to be. Mitochondrial metabolism, particularly the bioenergetic reactions of oxidative electron transport and phosphorylation, continue to be active in the light and are essential for sustaining photosynthetic carbon assimilation. The marked and mutually beneficial interaction between mitochondria and chloroplasts is intriguing. The key compartments within plant cells, including not only mitochondria and chloroplasts but also the peroxisomes and cytosol, appear to be in a delicate metabolic equilibrium. Disturbance of any of these compartments perturbs the metabolism of whole cell. Nevertheless, mitochondria appear to be the key players because they function during both photorespiration and dark respiration.  相似文献   

6.
Allelochemistry refers to the effect of an organic compound released from one organism upon an organism separated from its source. When the donor and receptor are plants (or microorganisms placed in the plant kingdom), allelopathy is described whether the effect is harmful or beneficial. In the aquatic environment, water disperses any water‐soluble allelochemical from its point of release, and rapid dilution along with lack of contact between competing organisms reduces potential encounter. This review centers on macroalgae as the source of allelochemicals. In all examples, the releasor organism is a macroalga, but receptor organisms include algae, invertebrates, fish, and microbes. Direct evidence in the sea is scanty, and there is a need for appropriate experiments in the laboratory and field. The compounds that are released by macrolagae (e.g., polyphenolics, halogenated phenols, and terpenoids) may be fortuitous byproducts of metabolism. But where they alter colonization, growth, or reproduction in a target organism, it is conceivable that they influence community structure as is known for terrestrial systems. The potential for allelochemistry is maximized in sites where water is poorly mixed, allowing released algal products to concentrate (e.g., tide pools and backbays) and where the receptor organism is adjacent to the releasor (e.g., surfaces of thalli and seaweed farms). In combination with restricting environmental conditions (e.g., critical temperature, light, salinity, pH, or oxygen), the effect of allelopathy can be synergistic. Combinations of allelochemicals, each at a concentration too low to be physiologically effective, could have a pronounced impact.  相似文献   

7.
The experiments were conducted with 10-day-old seedlings of wheat (Triticum aestivum L). Phytochrome B was activated using an array of light diodes emitting light in the red spectral region (RL) and inactivated by an array of light diodes emitting far-red light (FRL). At the end of the night dark period (8 h), activity of the chloroplastic GAP-dehydrogenase complex (the sequence of reactions: 3-PGA → 1,3-PGA → 3-GAP) was 1.0?1.2 μmol of oxidized NADPH/(min g fr wt of the leaf). When the leaves of intact plants were exposed to a maximal dose of RL (20 min at 17.5 kJ/m2), enzyme activity rose by 100–120%. Longer exposure to RL (30 and 40 min) did not cause further activation. Successive exposure to RL and FRL (20 min at 3.0 kJ/m2) completely negated a stimulatory effect of RL. It was shown that as little as 5-min-long exposure to RL increased the rate of 3-GAP formation by 20–25%, and enzyme activity rose linearly when radiation dose was elevated. Determination of the lifetime of RL-activated state by its decrease in plants placed in darkness showed that decay occurred with τ1/2 of 50?60 min when RL was switched off. Thus, a phytochrome B-induced regulation of reducing enzyme complex governing the reductive pentose phosphate cycle was discovered. Judging from the kinetics of attenuation of the activated state, phytochrome B apparently does not affect de novo synthesis of the enzyme. Since the investigated metabolic process consists of two coupled reactions controlled by kinase and dehydrogenase, the place and mechanism of action of the phytochrome system remain unknown.  相似文献   

8.
9.
Using marine macroalgae for carbon sequestration: a critical appraisal   总被引:1,自引:0,他引:1  
There has been a good deal of interest in the potential of marine vegetation as a sink for anthropogenic C emissions (“Blue Carbon”). Marine primary producers contribute at least 50% of the world’s carbon fixation and may account for as much as 71% of all carbon storage. In this paper, we analyse the current rate of harvesting of both commercially grown and wild-grown macroalgae, as well as their capacity for photosynthetically driven CO2 assimilation and growth. We suggest that CO2 acquisition by marine macroalgae can represent a considerable sink for anthropogenic CO2 emissions and that harvesting and appropriate use of macroalgal primary production could play a significant role in C sequestration and amelioration of greenhouse gas emissions.  相似文献   

10.
Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F. Strzepek and P.J. Harrison, Photosynthetic architecture differs in coastal and oceanic diatoms, Nature 431 (2004) 689-692.]. These thylakoid membrane components have well characterised roles in linear and cyclic photosynthetic electron transport and their low abundance creates potential impediments to photosynthetic function. Here we show that the marine cyanobacterium Synechococcus WH8102 exhibits significant alternative electron flow to O2, a potential adaptation to the low iron environment in oligotrophic oceans. This alternative electron flow appears to extract electrons from the intersystem electron transport chain, prior to photosystem I. Inhibitor studies demonstrate that a propyl gallate-sensitive oxidase mediates this flow of electrons to oxygen, which in turn alleviates excessive photosystem II excitation pressure that can often occur even at relatively low irradiance. These findings are also discussed in the context of satisfying the energetic requirements of the cell when photosystem I abundance is low.  相似文献   

11.
The metabolic pathways in photosynthesis are modelled as an interconnected series of chemical reactions representing the electron transfer system, the carbon reduction cycle and starch and sucrose synthesis according to the model of Laisk and Walker [Proc R Soc Lond 227, 281–302 (1986)]. The model is formulated as a set of non-linear differential equations using mass-action kinetics, and stimulated for transient behaviour using an interactive simulation language. The model responses to switched light demonstrate the existence of oscillatory behaviour, similar to that found experimentally in O2 evolution and chlorophyll fluorescence, and explain known transient behaviour. The model is also used to investigate the source of oscillatory behaviour in the phosphate translocator, and other transient phenomena associated with the cyclic electron transfer system.Abbreviations PQ plastoquinone - PQH2 plastoquinol - PCred reduced plastocyanin - PCox oxidised plastocyanin - Pi ortho (inorganic) phosphate in chloroplasts - Pio inorganic orthophosphate in cytosol - TP triose phosphate - Ru5P ribulose-5-phosphate - RuBP ribulose bisphosphate - PGA phosphoglyceric acid - HP hexose phosphate - HPo hexose phosphate-total sugar phosphate in cytoplasm - S starch - SU sucrose  相似文献   

12.
Fixation of CO2 and N assimilation were studied in synchronous cultures of Scenedesmus obtusiusculus Chod. under saturating and limiting light. Within the photon-flux range studied, the cells maintained C to N assimilation ratios of 7–10 with either NO 3 - , NO 2 + or NH 4 + as the N source. Competitive interactions between C and N assimilation were pronounced under light limitation and were proportional to the oxidation status of the N source. Fixation of CO2 at saturating light was also slightly reduced by NO 2 - and NH 4 + . In the absence of CO2, NO 3 - uptake and reduction was light-saturated at a comparatively low photon flux, whereas NO 2 - uptake and reduction was considerably faster in the absence of CO2 than in its presence. The pools of reduced pyridine nucleotides (NADPH and NADH) were largely unaffected by the presence or absence of the different N sources. The regulatory influences of CO2 fixation on N assimilation are discussed in terms of coupling between the rates of CO2 fixation and NH 4 + assimilation, as well as the existance of control mechanisms for NO 3 - uptake and reduction.Abbreviations Chl chlorophyll - PF photon flux  相似文献   

13.
14.
15.
16.
In green leaves and a number of algae, photosynthetically derived carbon is ultimately converted into two carbohydrate end-products, sucrose and starch. Drainage of carbon from the Calvin cycle proceeds via triose phosphate, fructose 6-phosphate and glycollate. Gluconeogenesis in photosynthetic cells is controlled by light, inorganic phosphate and phosphorylated sugars. Light stimulates the production of dihydroxyacetone phosphate, the initial substrate for sucrose and starch synthesis, and inhibits the degradative pathways in the chloroplast. Phosphate inactivates reactions of synthesis and activates reactions of degradation. Among the phosphorylated sugars a special role is allocated to fructose 2,6-bisphosphate, which is present in the cytoplasm at very low concentrations and inhibits sucrose synthesis directly by inactivating pyrophosphatedependent phosphofructokinase. The synthesis of sucrose plays a central role in the partitioning of photosynthetic carbon. The cytoplasmic enzymes, fructose bisphosphate phosphatase and sucrose phosphate synthase are likely key points of regulation. The regulation is carried out by several effector metabolites. Fructose 2,6-bisphosphate is likely to be the main coordinator of the rate of sucrose synthesis, hence of photosynthetic carbon partitioning between sucrose and starch.Paper presented at the FESP meeting (Strasbourg, 1984)  相似文献   

17.
A number of non-green plant tissues have high rates of HCO3-consuming reactions in the cytosol, i.e. C4 dicarboxylic acid production preceding organic acid anion transport into dicarboxylate consuming compartments in N2-fixing root nodules, in lipogenic tissues, and in thermogenic aroid spadices and, in the case of lipogenic tissues, in acetyl CoA incorporation into lipid in plastid stroma. Since inorganic C supply to the cytosol or stroma by decarboxylation reactions, and by transmembrane fluxes, involves only CO2, the HCO3 consumed in the rapid metabolic processes must originate from hydration (hydroxylation) of CO2. Computations based on the first-order rate constant for uncatalysed conversion of CO2 to HCO3 and the most likely in vivo CO2 concentration show that the uncatalysed reaction is possibly adequate to supply the observed HCO3 requirement in the HCO3-consuming compartments. However, carbonic anhydrase activity is well established in legume root nodules, and also appears to occur in aroid spadices. In addition to coping with any heterogeneities in HCO3, consumption in the cytosol, the root nodule activity may be involved in optimizing haemoglobin function. Further work is needed on carbonic anhydrase expression is tissues with rapid HCO3 consumption, especially in view of reports of negligible carbonic anhydrase activity in some non-green plant tissues. Other possible roles of carbonic anhydrase in non-green plant tissues are briefly discussed.  相似文献   

18.
Four species of brown algae, Sphacelaria arctica, S. plumosa, Desmarestia aculeata , and midribs of a Fucus species have been found in Holocene and interstadial deposits in Greenland. The green alga Chlorochytrium dermatocolax and the red alga Audoui-nella cfr. microscopica are reported for the first time in such deposits. All species are present in the extant flora of marine, benthic algae from Greenland. They are very well preserved and can be identified to species level.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号