首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The last common bilaterian ancestor   总被引:11,自引:0,他引:11  
Many regulatory genes appear to be utilized in at least superficially similar ways in the development of particular body parts in Drosophila and in chordates. These similarities have been widely interpreted as functional homologies, producing the conventional view of the last common protostome-deuterostome ancestor (PDA) as a complex organism that possessed some of the same body parts as modern bilaterians. Here we discuss an alternative view, in which the last common PDA had a less complex body plan than is frequently conceived. This reconstruction alters expectations for Neoproterozoic fossil remains that could illustrate the pathways of bilaterian evolution.  相似文献   

7.
8.
One of the main motivations to study amphioxus is its potential for understanding the last common ancestor of chordates, which notably gave rise to the vertebrates. An important feature in this respect is the slow evolutionary rate that seems to have characterized the cephalochordate lineage, making amphioxus an interesting proxy for the chordate ancestor, as well as a key lineage to include in comparative studies. Whereas slow evolution was first noticed at the phenotypic level, it has also been described at the genomic level. Here, we examine whether the amphioxus genome is indeed a good proxy for the genome of the chordate ancestor, with a focus on protein-coding genes. We investigate genome features, such as synteny, gene duplication and gene loss, and contrast the amphioxus genome with those of other deuterostomes that are used in comparative studies, such as Ciona, Oikopleura and urchin.  相似文献   

9.
The Wnt gene family encodes secreted signaling molecules that control cell fate specification, proliferation, polarity, and movements during animal development. We investigate here the evolutionary history of this large multigenic family. Wnt genes have been almost exclusively isolated from two of the three main subdivisions of bilaterian animals, the deuterostomes (which include chordates and echinoderms) and the ecdysozoans (e.g., arthropods and nematodes). However, orthology relationships between deuterostome and ecdysozoan Wnt genes, and, more generally, the phylogeny of the Wnt family, are not yet clear. We report here the isolation of several Wnt genes from two species, the annelid Platynereis dumerilii and the mollusc Patella vulgata, which both belong to the third large bilaterian clade, the lophotrochozoans (which constitute, together with ecdysozoans, the protostomes). Multiple phylogenetic analyses of these sequences with a large set of other Wnt gene sequences, in particular, the complete set of Wnt genes of human, nematode, and fly, allow us to subdivide the Wnt family into 12 subfamilies. At least nine of them were already present in the last common ancestor of all bilaterian animals, and this further highlights the genetic complexity of this ancestor. The orthology relationships we present here open new perspectives for future developmental comparisons.  相似文献   

10.
The origin and evolution of ANTP superclass genes has raised controversial discussions. While recent evidence suggests that a true Hox cluster emerged after the cnidarian bilaterian split, the origin of the ANTP superclass as a whole remains unclear. Based on analyses of bilaterian genomes, it seems very likely that clustering has once been a characteristic of all ANTP homeobox genes and that their ancestors have emerged through several series of cis-duplications from the same genomic region. Since the diploblastic Cnidaria possess orthologs of some non-Hox ANTP genes, at least some steps of the expansion of this hypothetical homeobox gene array must have occurred in the last common ancestor of both lineages--but it is unknown to what extent. By screening the unassembled Nematostella genome, we have identified unambiguous orthologs to almost all non-Hox ANTP genes which are present in Bilateria--with the exception of En, Tlx and (possibly) Vax. Furthermore, Nematostella possesses ANTP genes that are missing in some bilaterian lineages, like the rough gene or NK7. In addition, several ANTP homeobox gene families have been independently duplicated in Nematostella. We conclude that the last cnidarian/bilaterian ancestor already harboured the almost full complement of non-Hox ANTP genes before the Hox system evolved.  相似文献   

11.
The evolution of ANTP genes in the Metazoa has been the subject of conflicting hypotheses derived from full or partial gene sequences and genomic organization in higher animals. Whole genome sequences have recently filled in some crucial gaps for the basal metazoan phyla Cnidaria and Porifera. Here we analyze the complete genome of Trichoplax adhaerens, representing the basal metazoan phylum Placozoa, for its set of ANTP class genes. The Trichoplax genome encodes representatives of Hox/ParaHox-like, NKL, and extended Hox genes. This repertoire possibly mirrors the condition of a hypothetical cnidarian-bilaterian ancestor. The evolution of the cnidarian and bilaterian ANTP gene repertoires can be deduced by a limited number of cis-duplications of NKL and "extended Hox" genes and the presence of a single ancestral "ProtoHox" gene.  相似文献   

12.
13.
Sipunculan ParaHox genes   总被引:7,自引:0,他引:7  
SUMMARY Our perspective on the origin and evolution of the Hox gene cluster changed with the discovery of the ParaHox gene cluster in amphioxus (Cephalochordata; Branchiostoma floridae ) ( Brooke et al. 1998 ). The ParaHox gene cluster contains three homeobox genes (Gsx, Xlox, Cdx) and is deduced to be a paralogue (evolutionary sister) of the Hox gene cluster. If this deduction is correct, animals with Hox genes should also possess ParaHox genes. Paradoxically, however, only deuterostome animals have thus far been shown to contain all three ParaHox genes. Here we report the cloning of all three ParaHox genes from each of two species within the phylum Sipuncula. This is the first demonstration of all three ParaHox genes in the genome of a protostome animal and confirms that the common ancestor of protostomes and deuterostomes possessed all three ParaHox genes. Furthermore, it implies that the ParaHox genes are of sufficient functional importance in both protostomes and deuterostomes that they have all been conserved in both of these bilaterian clades.  相似文献   

14.
We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.   相似文献   

15.
Hox and other Antennapedia (ANTP)-like homeobox gene subclasses - ParaHox, EHGbox, and NK-like - contribute to key developmental events in bilaterians [1-4]. Evidence of physical clustering of ANTP genes in multiple animal genomes [4-9] suggests that all four subclasses arose via sequential cis-duplication events. Here, we show that Hox genes' origin occurred after the divergence of sponge and eumetazoan lineages and occurred concomitantly with a major evolutionary transition in animal body-plan complexity. By using whole genome information from the demosponge Amphimedon queenslandica, we provide the first conclusive evidence that the earliest metazoans possessed multiple NK-like genes but no Hox, ParaHox, or EHGbox genes. Six of the eight NK-like genes present in the Amphimedon genome are clustered within 71 kb in an order akin to bilaterian NK clusters. We infer that the NK cluster in the last common ancestor to sponges, cnidarians, and bilaterians consisted of at least five genes. It appears that the ProtoHox gene originated from within this ancestral cluster after the divergence of sponge and eumetazoan lineages. The maintenance of the NK cluster in sponges and bilaterians for greater than 550 million years is likely to reflect regulatory constraints inherent to the organization of this ancient cluster.  相似文献   

16.
The origin of animal segmentation, the periodic repetition of anatomical structures along the anteroposterior axis, is a long-standing issue that has been recently revived by comparative developmental genetics. In particular, a similar extensive morphological segmentation (or metamerism) is commonly recognized in annelids and arthropods. Mostly based on this supposedly homologous segmentation, these phyla have been united for a long time into the clade Articulata. However, recent phylogenetic analysis dismissed the Articulata and thus challenged the segmentation homology hypothesis. Here, we report the expression patterns of genes orthologous to the arthropod segmentation genes engrailed and wingless in the annelid Platynereis dumerilii. In Platynereis, engrailed and wingless are expressed in continuous ectodermal stripes on either side of the segmental boundary before, during, and after its formation; this expression pattern suggests that these genes are involved in segment formation. The striking similarities of engrailed and wingless expressions in Platynereis and arthropods may be due to evolutionary convergence or common heritage. In agreement with similarities in segment ontogeny and morphological organization in arthropods and annelids, we interpret our results as molecular evidence of a segmented ancestor of protostomes.  相似文献   

17.
Gene phylogenetic trees were constructed by the maximum parsimony method for various sets of ninety six globin chain amino acid sequences spanning plant and animal kingdoms. The method, executed by several computer programs, constructed ancestor and descendant globin messengers on tree topologies which required the least number of nucleotide replacements to account for the evolution of the globins. The human myoglobin-hemoglobin divergence was traced to a gene duplication which occurred either in the first vertebrates or earlier yet in the common ancestor of chordates and annelids, the alpha-beta divergence to a gene duplication in the common ancestor of teleosts and tetrapods, the gamma divergence from typical beta chains to a gene duplication in basal therian mammals, and the delta separation from beta to a duplication in the basal catarrhine primates. Evidence was provided by the globin phylogenies for the hominoid affinities of the gibbon and the close phyletic relationship of the African apes to man. Over the period of teleos-tetrapod divergence the globin messengers evolved at an average rate of 18.5 nucleotide replacements per 100 codons per 108 years, a faster rate than most previous estimates. Very fast and very slow rates were encountered in different globin lineages and at different stages of descent, reducing the effectiveness of globins as molecular clocks. Rates increased with gene duplication and decreased after selection discovered useful specializations in the products of genes which had previously been freer to accept mutations. The early eutherian radiation was characterized by rapid rates of globin evolution, but the later hominoid radiation by extremely slow rates. This pattern was related to more complicated grades of internal organization evolving in human ancestors. The types of nucleotide replacements in the globin messengers over the long course of globin evolution did not seem indicative of any special mutational mechanisms.  相似文献   

18.
With the availability of an increasing number of whole genome sequences in chordates, exhaustive comparisons of multigene families become feasible. Relationships of orthology/paralogy can not only be inferred from sequence similarity but also by comparing synteny conservation on chromosomes. More accurate scenarios for gene and expression domain gain or loss can now be proposed. Here, we take benefit from the recent release of the medaka (Oryzias latipes) genome to analyse the orthology relationships and expression patterns of the three different sub-families of the pitx homeobox genes belonging to the paired class. They are involved in a wide variety of developmental processes and have pleiotropic expression patterns, especially in the case of the pitx2 sub-family. The emerging picture is a strong conservation of expression domains, suggesting that most functions have been present in the common ancestor of actinopterygians and sarcopterygians. Almost all pitx genes are expressed in anterior placodes in all species studied so far, including medaka. It has previously been shown that in mammals, pitx1 and 2 are expressed in the pituitary. Interestingly we demonstrate here that only pitx3 is expressed in medaka pituitary. It will be interesting to analyze what are the corresponding changes in the regulatory elements of pitx genes.  相似文献   

19.
CUT class homeobox genes, including CUX/CASP, ONECUT, SATB and COMPASS family genes, are known to exhibit diverse features in the homeodomain and the domain architecture. Furthermore, the intron/exon organization of CUX/CASP is different between vertebrates and protostomes, and SATB genes are only known for vertebrates, whereas COMPASS genes have only been found in protostomes. These observations suggest a complex evolutionary history for the CUT class homeobox genes, but the evolution of CUT class homeobox genes in the lineage to vertebrates remained largely unknown. To obtain clearer insights into this issue, we searched the genome of amphioxus, Branchiostoma floridae, a lower chordate, for CUT class homeobox genes by extensive BLAST survey and phylogenetic analyses. We found that the genome of Branchiostoma floridae encodes each single orthologue of CUX/CASP, ONECUT, and COMPASS, but not the SATB gene, and one atypical CUT gene likely specific to this species. In addition, the genomic structure of the amphioxus CUX/CASP gene turned out to be protostome-type, but not vertebrate-type. Based on these observations, we propose a model in which SATB is suggested to evolve at the expense of COMPASS and this change, together with the structural change in CUX/CASP, is supposed to take place in the lineage to vertebrates after divergence of the amphioxus and vertebrate ancestors. The present study provides an example of dramatic evolution among homeobox gene groups in the vertebrate lineage and highlights the ancient character of amphioxus, retaining genomic features shared by protostomes.  相似文献   

20.
NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号