首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have previously shown that in a HEK-293 cell line that overexpresses the C1a isoform of the calcitonin receptor (C1a-HEK), calcitonin induces the tyrosine phosphorylation of the focal adhesion-associated proteins HEF1 (a p130(Cas)-like docking protein), paxillin, and focal adhesion kinase and that it also stimulates the phosphorylation and activation of Erk1 and Erk2. We report here that cell attachment to the extracellular matrix, an intact actin cytoskeleton, and c-Src are absolutely required for the calcitonin-induced phosphorylation of focal adhesion-associated proteins. In contrast to the phosphorylation of paxillin and HEF1 in cells attached to fibronectin-coated dishes, calcitonin failed to stimulate the phosphorylation of paxillin and HEF1 in suspended cells, in cells attached to poly-d-lysine-coated dishes, and in attached cells pretreated with the RGD-containing peptide GRGDS. Overexpression of wild-type c-Src increased calcitonin-induced paxillin and HEF1 phosphorylation, whereas overexpression of kinase-dead Src or Src lacking a functional SH2 domain inhibited the calcitonin-stimulated tyrosine phosphorylation of these proteins. Overexpression of Src lacking the SH3 domain did not affect the calcitonin-induced phosphorylation of paxillin and HEF1. In contrast to the regulation of paxillin and HEF1 phosphorylation, the calcitonin-induced phosphorylation of Erk1 and Erk2 did not appear to involve c-Src and was only partially dependent on cell adhesion to the extracellular matrix and an intact actin cytoskeleton. Furthermore, inhibition of Erk1 and Erk2 phosphorylation had no effect on the calcitonin-induced phosphorylation of paxillin and HEF1. Thus, in C1a-HEK cells, the calcitonin receptor is coupled to the tyrosine phosphorylation of focal adhesion-associated proteins and to Erk1/2 phosphorylation by mechanisms that are in large part independent.  相似文献   

2.
Cas (Crk-associated substrate) and HEF1 (human enhancer of filamentation) are related adaptor proteins that function in integrin-mediated cell adhesion and antigen receptor signaling pathways. We report here a molecular cloning of Chat (Cas/HEF1-associated signal transducer) that associates with Cas and HEF1. Chat is a 78-kDa signaling molecule with an N-terminal SH2 domain and is expressed in a wide range of tissues. In hematopoietic cells, a 115-kDa isoform of Chat (Chat-H) was specifically expressed. Chat is associated with Cas in brain, and Chat-H is associated with HEF1 in splenocytes. Deletion analyses revealed that Chat and Cas are associated with each other by their C-terminal domains. Treatment of PC12 cells with epidermal growth factor or nerve growth factor increased the phosphorylation level of Chat. This increase was suppressed by an inhibitor of mitogen-activated protein (MAP) kinase kinase, PD98059, suggesting the phosphorylation of Chat by MAP kinase. In Chat-overexpressed COS7 cells, the activity of c-Jun N-terminal kinase was up-regulated. After the epidermal growth factor stimulation, Chat and Cas were colocalized with actin filaments at ruffling membranes. These findings suggest that Chat transduces signals of tyrosine kinases and MAP kinase to Cas signaling pathway.  相似文献   

3.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

4.
Treatment of intact Swiss 3T3 cells with calyculin-A, an inhibitor of myosin light chain (MLC) phosphatase, induces tyrosine phosphorylation of p125(Fak) in a sharply concentration- and time-dependent manner. Maximal stimulation was 4.2 +/- 2.1-fold (n = 14). The stimulatory effect of calyculin-A was observed at low nanomolar concentrations (<10 nM); at higher concentrations (>10 nM) tyrosine phosphorylation of p125(Fak) was strikingly decreased. Calyculin-A induced tyrosine phosphorylation of p125(Fak) through a protein kinase C- and Ca(2+)-independent pathway. Exposure to either cytochalasin-D or latrunculin-A, which disrupt actin organization by different mechanisms, abolished tyrosine phosphorylation of p125(Fak) in response to calyculin-A. Treatment with high concentrations of platelet-derived growth factor (20 ng/ml) which also disrupt actin stress fibers, completely inhibited tyrosine phosphorylation of p125(Fak) in response to calyculin-A. This agent also induced tyrosine phosphorylation of the focal adhesion-associated proteins p130(Cas) and paxillin. These tyrosine phosphorylation events were associated with a striking increase in the assembly of focal adhesions. The Rho kinase (ROK) inhibitor HA1077 that blocked focal adhesion formation by bombesin, had no effect on the focal adhesion assembly induced by calyculin-A. Thus, calyculin-A induces transient focal adhesion assembly and tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin, acting downstream of ROK.  相似文献   

5.
6.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

7.
8.
K252a, a protein kinase inhibitor, acts as a neurotrophic factor in several neuronal cells. In this study we show that K252a enhanced the differentiation of C2C12 myoblasts as well as tyrosine phosphorylation of several focal adhesion-associated proteins including p130(Cas), focal adhesion kinase, and paxillin. The tyrosine phosphorylation of these proteins, reaching a maximum at 30 min after K252a treatment, closely correlated with the colocalization of these proteins in focal adhesion complexes and the coimmunoprecipitation of these proteins with p130(Cas). In addition, K252a stimulated longitudinal development of stress fiber-like structures and cell-matrix interaction in postmitotic myoblasts and eventually formation of well-developed myofibrils in multinucleated myotubes. Herbimycin A, a potent inhibitor of Src family kinases, and cytochalasin D, a selective disrupting-agent of actin filament, completely inhibited K252a-induced tyrosine phosphorylation as well as myoblast differentiation. Similar inhibitory effect was observed in the cells scrape loaded with a Rho inhibitor, C3 transferase, and the treatment of K252a induced a rapid translocation of Rho. These results are consistent with the model that Rho-dependent tyrosine phosphorylation of focal adhesion-associated proteins plays an important role in skeletal muscle differentiation.  相似文献   

9.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

10.
Osmotic shock induces GLUT4 translocation and glucose uptake through a mechanism independent of PI 3-kinase, but dependent on tyrosine phosphorylation of cellular proteins. To identify the tyrosine phosphorylated proteins required for osmotic shock-stimulated glucose uptake, we examined tyrosine phosphorylation of candidate proteins, and found that the 60-80kDa species including paxillin and the 120-130kDa species including p130Cas, PYK2, FAK and Gab1 were tyrosine-phosphorylated in response to osmotic shock. Inhibition of actin polymerization by cytochalasin D significantly decreased the tyrosine phosphorylation of paxillin, p130Cas, PYK2 and FAK but not Gab1, but had no effect on 2-deoxyglucose (DOG) uptake, suggesting a role for Gab1 in osmotic shock-induced glucose transport. Also, we found that osmotic shock increases the association of phospholipase C-gamma (PLC-gamma) with Gab1 and stimulates tyrosine phosphorylation of PLC-gamma itself. The PLC inhibitor, U73122, inhibited osmotic shock-induced 2-DOG uptake. These results suggest that tyrosine phosphorylation of Gab1 and subsequent recruitment and activation of PLC-gamma may play a role in osmotic shock-induced glucose transport.  相似文献   

11.
Transforming growth factor-beta (TGF-beta) regulates a wide range of physiological and pathological cellular processes, including cell migration, mesenchymal transition, extracellular matrix synthesis, and cell death. Cas (Crk-associated substrate, 130 kDa), an adaptor protein localized at focal adhesions and stress fibers, is also known to have important functions in cell migration and the induction of immediate-early gene expression. Here, we report that a rapid and transient tyrosine phosphorylation of Cas is induced by TGF-beta 1 and that E-cadherin-mediated cell-cell interaction and the Src kinase pathway are involved in this early TGF-beta signaling. The addition of TGF-beta 1 to epithelial cells rapidly induced tyrosine phosphorylation of Cas and promoted the formation of complexes between focal adhesion molecules. Cas phosphorylation required the integrity of the actin cytoskeleton but was not dependent on cell adhesion, implying that Cas-dependent signaling may be distinct from integrin signaling. TGF-beta 1 also stimulated Src kinase activity, and specific inhibitors of Src completely blocked the induction of Cas phosphorylation by TGF-beta 1. The Cas phosphorylation and Src kinase activation seen in our results were induced in an epithelial phenotype-specific manner. Stable transfection of E-cadherin to L929 cells and L cells as well as E-cadherin blocking assay revealed that E-cadherin-mediated cell-cell interactions were essential for both Cas phosphorylation and Src kinase activation. Taken together, our data suggest that rapid Cas phosphorylation and Src kinase activation may play a novel role in TGF-beta signal transduction.  相似文献   

12.
Budding in Saccharomyces cerevisiae follows a genetically programmed pattern of cell division which can be regulated by external signals. On the basis of the known functional conservation between a number of mammalian oncogenes and antioncogenes with genes in the yeast budding pathway, we used enhancement of pseudohyphal budding in S. cerevisiae by human proteins expressed from a HeLa cDNA library as a morphological screen to identify candidate genes that coordinate cellular signaling and morphology. In this report, we describe the isolation and characterization of human enhancer of filamentation 1 (HEF1), an SH3-domain-containing protein that is similar in structure to pl30cas, a recently identified docking protein that is a substrate for phosphorylation by a number of oncogenic tyrosine kinases. In contrast to p130cas, the expression of HEF1 appears to be tissue specific. Further, whereas p130cas is localized predominantly at focal adhesions, immunofluorescence indicates that HEF1 localizes to both the cell periphery and the cell nucleus and is differently localized in fibroblasts and epithelial cells, suggesting a more complex role in cell signalling. Through immunoprecipitation and two-hybrid analysis, we demonstrate a direct physical interaction between HEF1 and p130cas, as well as an interaction of the SH3 domain of HEF1 with two discrete proline-rich regions of focal adhesion kinase. Finally, we demonstrate that as with p130cas, transformation with the oncogene v-abl results in an increase in tyrosine phosphorylation on HEF1, mediated by a direct association between HEF1 and v-Abl. We anticipate that HEF1 may prove to be an important linking element between extracellular signalling and regulation of the cytoskeleton.  相似文献   

13.
The Cas family proteins are a family of adhesion docking molecules that mediate protein-protein interactions and contribute to a number of signal transduction pathways. Recent studies of two family members, p130Cas and Sin, have suggested that they may play a role in neurite formation. The current study demonstrates that the third family member, HEF1, can also stimulate the formation of neurite-like processes, in the presence of Rho kinase inhibitors. The HEF1-promoted processes actively extend from the cell body and resemble neurites both in the manner of process extension and in the distribution of adhesion-associated molecules. The HEF1-promoted processes are dependent on the presence of an intact microtubule system and can be inhibited by co-expression of either constitutively active Rac or Cdc42 GTPase. Together, our data support a role for the Cas proteins in regulating cellular morphologies that contribute to tissue specialization.  相似文献   

14.
Focal adhesion kinase (FAK or pp125FAK) is a cytosolic protein tyrosine kinase which plays an important role in integrin‐mediated signal transduction. Adhesion of cells to the substratum correlates with an increase in tyrosine phosphorylation of FAK as well as an associated protein, paxillin. In this report we show that the tyrosine phosphorylation of FAK and paxillin are decreased during dibutyryl cyclic AMP–induced (dB‐cAMP) process formation in astrocytes. When astrocytes in suspension are treated with dB‐cAMP, no alteration in morphology or tyrosine phosphorylation is observed, suggesting that both phenomena are linked and adhesion dependent. Furthermore, genistein, a tyrosine kinase inhibitor, can induce process formation in such cells, underscoring the significance of protein tyrosine kinases in maintaining the morphology of adherent cells. Finally, endothelin‐1, a vasopeptide which is known to inhibit process formation in astrocytes, inhibited the tyrosine dephosphorylation of proteins associated with dB‐cAMP treatment. These results suggest that the formation of asymmetric processes in astrocytes results from a coordinated set of alterations in the actin cytoskeleton as well as the adhesion of the cell to the substratum. Modification of the properties of such molecules is required for process formation and the dynamic modulation of astrocytic morphology in vitro and in vivo. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 407–422, 1999  相似文献   

15.
16.
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.  相似文献   

17.
Targeted disruption of either c-Src or TNFR-associated factor 6 (TRAF6) in mice causes osteoclast dysfunction and an osteopetrotic phenotype, suggesting that both molecules play important roles in osteoclastic bone resorption. We previously demonstrated that IL-1 induces actin ring formation and osteoclast activation. In this study, we examined the relationship between IL-1/TRAF6-dependent and c-Src-mediated pathways in the activation of osteoclast-like cells (prefusion cells (pOCs); multinucleated cells) formed in the murine coculture system. In normal pOCs, IL-1 induces actin ring formation and tyrosine phosphorylation of p130(Cas), a known substrate of c-Src. However, in Src-deficient pOCs, p130(Cas) was not tyrosine phosphorylated following IL-1 treatment. In normal pOCs treated with IL-1, anti-TRAF6 Abs coprecipitate p130(Cas), protein tyrosine kinase 2, and c-Src. In Src-deficient pOCs, this molecular complex was not detected, suggesting that c-Src is required for formation of the TRAF6, p130(Cas), and protein tyrosine kinase 2 complex. Moreover, an immunocytochemical analysis revealed that in osteoclast-like multinucleated cells, IL-1 induced redistribution of TRAF6 to actin ring structures formed at the cell periphery, where TRAF6 also colocalized with c-Src. Taken together, these data suggest that IL-1 signals feed into the tyrosine kinase pathways through a TRAF6-Src molecular complex, which regulates the cytoskeletal reorganization essential for osteoclast activation.  相似文献   

18.
This study aimed at determining the signaling pathways underlying calcitonin- and isoproterenol-induced stimulation of H,K-ATPase in rat renal collecting duct. H,K-ATPase activity was determined in microdissected collecting ducts preincubated with or without either specific inhibitors or antibodies directed against intracellular signaling proteins. Transient cell membrane permeabilization with streptolysin-O allowed intracellular access of antibodies. The stimulation of H,K-ATPase by calcitonin and isoproterenol was mimicked by cAMP analogues and was abolished by adenylyl cyclase inhibition. Protein kinase A inhibition abolished isoproterenol but not calcitonin effect on H,K-ATPase. Calcitonin increased the phosphorylation of extracellular signal-regulated kinase (ERK) in a protein kinase A-independent manner, and the inhibition of the ERK phosphorylation prevented the stimulation of H,K-ATPase by calcitonin. Antibodies directed against either the cAMP-activated guanine-nucleotide exchange factor Epac I, the monomeric G protein Rap-1 or the kinase Raf-B, curtailed the stimulation of H,K-ATPase by calcitonin, whereas antibodies against the related monomeric G protein Ras or kinase Raf-1 had no effect. In conclusion, calcitonin stimulates H,K-ATPase through a cAMP/Epac I/Rap-1/Raf-B/ERK cascade.  相似文献   

19.
The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas -/- mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.  相似文献   

20.
Previous reports suggest that PKC plays an important role in regulating myogenesis. However, the regulatory signaling pathways are not fully understood. We examined the effects of PKC downregulation on signaling events during skeletal muscle differentiation. We found that downregulation of PKC results in increased myogenesis in C2C12 cells as measured by creatine kinase activity and myogenin expression. We showed that, during differentiation, downregulation of PKC expression results in increased tyrosine phosphorylation of FAK, Cas, and paxillin, concomitant with enhanced Cas-CrkII complex formation, which leads to activation of JNK2. But in proliferated muscle cells, PKC inhibition results in FAK and Cas tyrosine dephosphorylation. Further, disruption of actin cytoskeleton by cytochalasin D prevents the activation of FAK and Cas as well as the formation of Cas-CrkII complex stimulated by PKC downregulation during muscle cell differentiation. Finally, we observed that PKC downregulation increases the tyrosine phosphorylation of focal adhesion associated proteins. Based on the above data, we propose that PKC downregulation results in enhanced tyrosine phosphorylation of FAK, Cas, and paxillin, thus promoting the establishment of Cas-CrkII complex, leading to activation of JNK and that these interactions are dependent upon the integrity of actin cytoskeleton during muscle cell differentiation. Data presented here significantly contribute to elucidating the regulatory role of PKC in myogenesis possibly through integrin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号