首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The iota(a) component (i(a)) of Clostridium perfringens ADP ribosylates nonmuscle beta/gamma actin and skeletal muscle alpha-actin. Replacement of Arg-295 in i(a) with alanine led to a complete loss of NAD(+)-glycohydrolase (NADase) and ADP-ribosyltransferase (ARTase); that of the residue with lysine caused a drastic reduction in NADase and ARTase activities (<0.1% of the wild-type activities) but did not completely diminish them. Substitution of alanine for Glu-378 and Glu-380 caused a complete loss of NADase and ARTase. However, exchange of Glu-378 to aspartic acid or glutamine resulted in little effect on NADase activity but a drastic reduction in ARTase activity (<0.1% of the wild-type activity). Exchange of Glu-380 to aspartic acid caused a drastic reduction in NADase and ARTase activities (<0.1% of the wild-type activities) but did not completely diminish them; that of the residue to glutamine caused a complete loss of ARTase activity. Replacement of Ser-338 with alanine resulted in 0.7 to 2.3% wild-type activities, and that of Ser-340 and Thr-339 caused a reduction in these activities of 5 to 30% wild-type activities. The kinetic analysis showed that Arg-295 and Ser-338 also play an important role in the binding of NAD(+) to i(a), that Arg-295, Glu-380, and Ser-338 play a crucial role in the catalytic rate of NADase activity, and that these three amino acid residues and Glu-378 are essential for ARTase activity. The effect of amino acid replacement in i(a) on ARTase activity was similar to that on lethal and cytotoxic activities, suggesting that lethal and cytotoxic activities in i(a) are dependent on ARTase activity.  相似文献   

2.
NAD glycohydrolases (NADases) catalyze the hydrolysis of NAD to ADP-ribose and nicotinamide. Although many members of the NADase family, including ADP-ribosyltransferases, have been cloned and characterized, the structure and function of NADases with pure hydrolytic activity remain to be elucidated. Here, we report the structural and functional characterization of a novel NADase from rabbit reticulocytes. The novel NADase is a glycosylated, glycosylphosphatidylinositol-anchored cell surface protein exclusively expressed in reticulocytes. shRNA-mediated knockdown of the NADase in bone marrow cells resulted in a reduction of erythroid colony formation and an increase in NAD level. Furthermore, treatment of bone marrow cells with NAD, nicotinamide, or nicotinamide riboside, which induce an increase in NAD content, resulted in a significant decrease in erythroid progenitors. These results indicate that the novel NADase may play a critical role in regulating erythropoiesis of hematopoietic stem cells by modulating intracellular NAD.  相似文献   

3.
An egg-specific NADase has been purified to homogeneity from the ovotestis of the opisthobranch mollusk Aplysia californica. Unlike other NADases, the Aplysia enzyme generates primarily cyclic-ADP-ribose (cADPR) rather than ADP-ribose from NAD. cADPR has been shown to stimulate the release of Ca2+ from microsomes prepared from sea urchin egg and, when injected into intact eggs, to activate the cortical reaction, multiple nuclear cycles, and DNA synthesis. The Aplysia enzyme was initially identified as an inhibitor of cholera and pertussis toxin-catalyzed ADP-ribosylation. By the use of an NADase assay, it was purified from the aqueous-soluble fraction of ovotestis by sequential column chromatography. The enzyme has an apparent molecular mass of 29 kDa, a Km for NAD of 0.7 mM, and a turnover rate of approximately 27,000 mol NAD.min-1.mol enzyme-1 at 30 degrees C. Monoclonal antibodies were generated to the NADase. Immunoblots of two-dimensional gels revealed multiple isoforms of the enzyme, with pls ranging from 8.1 to 9.8. The multiple isoforms were resolved with a cation exchange high-pressure liquid chromatography column and shown to generate cADPR. Immunohistochemical analysis of cryostat sections of Aplysia ovotestis shows that the enzyme is specific to the eggs and restricted to large 5- to 10-microns granules or vesicles. To date the cADPR-generating enzyme activity has been identified in various organisms, including mammals. The Aplysia enzyme is the first example in which the enzyme that generates cADPR has been purified. All of the available evidence indicates that this NADase is a second-messenger enzyme, implying that other NADases may serve a similar function.  相似文献   

4.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

5.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

6.
7.
Production of bioluminescence theoretically represents a cost, energetic or otherwise, that could slow Vibrio fischeri growth; however, bioluminescence is also thought to enable full symbiotic colonization of the Euprymna scolopes light organ by V. fischeri. Previous tests of these models have proven inconclusive, partly because they compared nonisogenic strains, or undefined and/or pleiotropic mutants. To test the influence of the bioluminescence-producing lux operon on growth and symbiotic competence, we generated dark luxCDABEG mutants in strains MJ1 and ES114 without disrupting the luxR-luxI regulatory circuit. The MJ1 luxCDABEG mutant out-competed its visibly luminescent parent approximately 26% per generation in a carbon-limited chemostat. Similarly, induction of luminescence in the otherwise dim ES114 strain slowed growth relative to DeltaluxCDABEG mutants. Some culture conditions yielded no detectable effect of luminescence on growth, indicating that luminescence is not always growth limiting; however, luminescence was never found to confer an advantage in culture. In contrast to this conditional disadvantage of lux expression, ES114 achieved approximately fourfold higher populations than its luxCDABEG mutant in the light organ of E. scolopes. These results demonstrate that induction of luxCDABEG can slow V. fischeri growth under certain culture conditions and is a positive symbiotic colonization factor.  相似文献   

8.
Recent reports suggest that the selective advantage of bioluminescence for bacteria is mediated by light-dependent stimulation of photolyase to repair DNA lesions. Despite evidence for this model, photolyase mutants have not been characterized in a naturally bioluminescent bacterium, nor has this hypothesis been tested in bioluminescent bacteria under natural conditions. We have now characterized the photolyase encoded by phr in the bioluminescent bacterium Vibrio fischeri ES114. Consistent with Phr possessing photolyase activity, phr conferred light-dependent resistance to UV light. However, upon comparing ES114 to a phr mutant and a dark Delta luxCDABEG mutant, we found that bioluminescence did not detectably affect photolyase-mediated resistance to UV light. Addition of the light-stimulating autoinducer N-3-oxo-hexanoyl homoserine lactone appeared to increase UV resistance, but this was independent of photolyase or bioluminescence. Moreover, although bioluminescence confers an advantage for V. fischeri during colonization of its natural host, Euprymna scolopes, the phr mutant colonized this host to the same level as the wild type. Taken together, our results indicate that at least in V. fischeri strain ES114, the benefits of bioluminescence during symbiotic colonization are not mediated by photolyase, and although some UV resistance mechanism may be coregulated with bioluminescence, we found no evidence that light production benefits cells by stimulating photolyase in this strain.  相似文献   

9.
We have characterized the effect of poly(ADP-ribose) polymerase automodification on the enzyme's activities, which include poly(ADP-ribose) synthesis and NADase activity. The apparent Km of the enzyme for NAD+ during polymer synthesis is higher than the one measured for alternate NADase activity. Furthermore, we have found that there are 28 automodification sites, in contrast to the 15 sites (postulated to be on the 15 glutamic acids) reported to be present in the automodification domain. For the first time, we show that some of these acceptor sites are outside the reported automodification domain (15 kDa); we demonstrate automodification in the NAD+ binding domain (55.2 kDa) and the DNA binding domain (42.5 kDa). We have analyzed the relationship between the number of sites modified on poly(ADP-ribose) polymerase and its effect on the polymerization activity and its alternate NADase activity. Automodification greatly altered both enzyme activities, decreasing both polymer synthesis and alternate NADase activity.  相似文献   

10.
The presence of NAD-metabolizing enzymes (e.g., ADP-ribosyltransferase (ART)2) on the surface of immune cells suggests a potential immunomodulatory activity for ecto-NAD or its metabolites at sites of inflammation and cell lysis where extracellular levels of NAD may be high. In vitro, NAD inhibits mitogen-stimulated rat T cell proliferation. To investigate the mechanism of inhibition, the effects of NAD and its metabolites on T cell proliferation were studied using ART2a+ and ART2b+ rat T cells. NAD and ADP-ribose, but not nicotinamide, inhibited proliferation of mitogen-activated T cells independent of ART2 allele-specific expression. Inhibition by P2 purinergic receptor agonists was comparable to that induced by NAD and ADP-ribose; these compounds were more potent than P1 agonists. Analysis of the NAD-metabolizing activity of intact rat T cells demonstrated that ADP-ribose was the predominant metabolite, consistent with the presence of cell surface NAD glycohydrolase (NADase) activities. Treatment of T cells with phosphatidylinositol-specific phospholipase C removed much of the NADase activity, consistent with at least one NADase having a GPI anchor; ART2- T cell subsets contained NADase activity that was not releasable by phosphatidylinositol-specific phospholipase C treatment. Formation of AMP from NAD and ADP-ribose also occurred, a result of cell surface pyrophosphatase activity. Because AMP and its metabolite, adenosine, were less inhibitory to rat T cell proliferation than was NAD or ADP-ribose, pyrophosphatases may serve a regulatory role in modifying the inhibitory effect of ecto-NAD on T cell activation. These data suggest that T cells express multiple NAD and adenine nucleotide-metabolizing activities that together modulate immune function.  相似文献   

11.
Mono-ADP-ribosylation, a post-translational modification in which the ADP-ribose moiety of NAD is transferred to an acceptor protein, is catalyzed by a family of amino acid-specific ADP-ribosyltransferases. ADP-ribosyltransferase 5 (ART5), a murine transferase originally isolated from Yac-1 lymphoma cells, differed in properties from previously identified eukaryotic transferases in that it exhibited significant NAD glycohydrolase (NADase) activity. To investigate the mechanism of regulation of transferase and NADase activities, ART5 was synthesized as a FLAG fusion protein in Escherichia coli. Agmatine was used as the ADP-ribose acceptor to quantify transferase activity. ART5 was found to be primarily an NADase at 10 microM NAD, whereas at higher NAD concentrations (1 mM), after some delay, transferase activity increased, whereas NADase activity fell. This change in catalytic activity was correlated with auto-ADP-ribosylation and occurred in a time- and NAD concentration-dependent manner. Based on the change in mobility of auto-ADP-ribosylated ART5 by SDS-polyacrylamide gel electrophoresis, the modification appeared to be stoichiometric and resulted in the addition of at least two ADP-ribose moieties. Auto-ADP-ribosylated ART5 isolated after incubation with NAD was primarily a transferase. These findings suggest that auto-ADP-ribosylation of ART5 was stoichiometric, resulted in at least two modifications and converted ART5 from an NADase to a transferase, and could be one mechanism for regulating enzyme activity.  相似文献   

12.
Cyclic ADP-ribose (cADPR) metabolism in mammals is catalyzed by NAD glycohydrolases (NADases) that, besides forming ADP-ribose, form and hydrolyze the N1-glycosidic linkage of cADPR. Thus far, no cADPR phosphohydrolase was known. We tested rat ADP-ribose/CDP-alcohol pyrophosphatase (ADPRibase-Mn) and found that cADPR is an ADPRibase-Mn ligand and substrate. ADPRibase-Mn activity on cADPR was 65-fold less efficient than on ADP-ribose, the best substrate. This is similar to the ADP-ribose/cADPR formation ratio by NADases. The product of cADPR phosphohydrolysis by ADPRibase-Mn was N1-(5-phosphoribosyl)-AMP, suggesting a novel route for cADPR turnover.  相似文献   

13.
Vibrio fischeri colonizes the squid Euprymna scolopes in a mutualistic symbiosis. Hatchling squid lack these bacterial symbionts, and V. fischeri strains must compete to occupy this privileged niche. We cloned a V. fischeri gene, designated pilA, that contributes to colonization competitiveness and encodes a protein similar to type IV-A pilins. Unlike its closest known relatives, Vibrio cholerae mshA and vcfA, pilA is monocistronic and not clustered with genes associated with pilin export or assembly. Using wild-type strain ES114 as the parent, we generated an in-frame pilA deletion mutant, as well as pilA mutants marked with a kanamycin resistance gene. In mixed inocula, marked mutants were repeatedly outcompeted by ES114 (P < 0.05) but not by an unmarked pilA mutant, for squid colonization. In contrast, the ratio of mutant to ES114 CFUs did not change during 70 generations of coculturing. The competitive defect of pilA mutants ranged from 1.7- to 10-fold and was more pronounced when inocula were within the range estimated for V. fischeri populations in Hawaiian seawater (200 to 2,000 cells/ml) than when higher densities were used. ES114 also outcompeted a pilA mutant by an average of twofold at lower inoculum densities, when only a fraction of the squid became infected, most by only one strain. V. fischeri strain ET101, which was isolated from Euprymna tasmanica and is outcompeted by ES114, lacks pilA; however, 11 other diverse V. fischeri isolates apparently possess pilA. The competitive defect of pilA mutants suggests that cell surface molecules may play important roles in the initiation of beneficial symbioses in which animals must acquire symbionts from a mixed community of environmental bacteria.  相似文献   

14.
NAD glycohydrolases are the longest known enzymes that catalyze ADP-ribose transfer. The function of these ubiquitous, membrane-bound enzymes has been a long standing puzzle. The NAD glycohydrolase are briefly reviewed in light of the discovery by our laboratory that NAD glycohydrolases are bifunctional enzymes that can catalyze both the synthesis and hydrolysis of cyclic ADP-ribose, a putative second messenger of calcium homeostasis.Abbreviations NADase nicotinamide adenine dinucleotide glycohydrolase - NAD nicotinamide adenine dinucleotide - ADP-ribose adenosine diphosphoribose - cADPR cyclic adenosine diphosphoribose  相似文献   

15.
ART2a (RT6.1) and ART2b (RT6.2) are NAD glycohydrolases (NADases) that are linked to T lymphocytes by glycosylphosphatidylinositol anchors. Although both mature proteins possess three conserved regions (I, II, III) that form the NAD-binding site and differ by only ten amino acids, only ART2b is auto-ADP-ribosylated and only ART2a is glycosylated. To investigate the structural basis for these differences, wild-type and mutant ART2a and ART2b were expressed in rat mammary adenocarcinoma (NMU) cells and released with phosphatidylinositol-specific phospholipase C. All mutants were immunoreactive NADases. Arginine 204 (Arg204), NH2-terminal to essential glutamate 209 in Region III, is found in ART2b, but not ART2a. Replacement of Arg204 in ART2b with lysine, tyrosine, or glutamate abolished auto-ADP-ribosylation. Unlike wild-type ART2a, ART2a(Y204R) was auto-ADP-ribosylated. The tryptophan mutant ART2b(R204W) was auto-ADP-ribosylated and exhibited enhanced NADase activity. Incubation with NAD and auto-ADP-ribosylation decreased the NADase activities of wild-type ART2b and ART2b (R204W), whereas activity of ART2b(R204K), which is not auto-modified, was unchanged by NAD. Facilitation of auto-ADP-ribosylation by tryptophan 204 suggests that the hydrophobic amino acid mimics an ADP-ribosylated arginine. Thus, Arg204 in ART2b serves as a regulatory switch whose presence is required for additional auto-ADP-ribosylation and regulation of catalytic activity.  相似文献   

16.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

17.
Motility is required for Vibrio fischeri cells to interact with and specifically colonize the light-emitting organ of their host, the squid Euprymna scolopes. To investigate the influence of motility on the expression of the symbiotic phenotype, we isolated mutants of the squid symbiont V. fischeri ES114 that had altered migration abilities. Spontaneous hyperswimmer (HS) mutants, which migrated more rapidly in soft agar and were hyperflagellated relative to the wild type, were isolated and grouped into three phenotypic classes. All of the HS strains tested, regardless of class, were delayed in symbiosis initiation. This result suggested that the hypermotile phenotype alone contributes to an inability to colonize squid normally. Class III HS strains showed the greatest colonization defect: they colonized squid to a level that was only 0.1 to 10% that achieved by ES114. In addition, class III strains were defective in two capabilities, hemagglutination and luminescence, that have been previously described as colonization factors in V. fischeri. Class II and III mutants also share a mucoid colony morphology; however, class II mutants can colonize E. scolopes to a level that was 40% of that achieved by ES114. Thus, the mucoid phenotype alone does not contribute to the greater defect exhibited by class III strains. When squid were exposed to ES114 and any one of the HS mutant strains as a coinoculation, the parent strain dominated the resulting symbiotic light-organ population. To further investigate the colonization defects of the HS strains, we used confocal laser-scanning microscopy to visualize V. fischeri cells in their initial interaction with E. scolopes tissue. Compared to ES114, HS strains from all three classes were delayed in two behaviors involved in colonization: (i) aggregation on host-derived mucus structures and (ii) migration to the crypts. These results suggest that, while motility is required to initiate colonization, the presence of multiple flagella may actually interfere with normal aggregation and attachment behavior. Furthermore, the pleiotropic nature of class III HS strains provides evidence that motility is coregulated with other symbiotic determinants in V. fischeri.  相似文献   

18.
Mouse Rt6.1 and Rt6.2, homologues of rat T-cell RT6 antigens, catalyze arginine-specific ADP-ribosylation. Without an added ADP-ribose acceptor, Rt6.2 shows NAD glycohydrolase (NADase) activity. However, Rt6.1 has been reported to be primarily an ADP-ribosyltransferase, but not an NADase. In the present study, we obtained evidence that recombinant Rt6.1 catalyzes NAD glycohydrolysis but only in the presence of DTT. The NADase activity of Rt6.1 observed in the presence of DTT was completely inhibited by N-ethylmaleimide (NEM). Native Rt6.1 antigen, immunoprecipitated from BALB/c mouse splenocytes with polyclonal antibodies generated against recombinant RT6.1, also exhibited NADase activity in the presence of DTT. Compared with Rt6.2, Rt6.1 has two extra cysteine residues at positions 80 and 201. When Cys-80 and Cys-201 in Rt6.1 were replaced with the corresponding residues of Rt6.2, serine and phenylalanine, respectively, Rt6.1 catalyzed the NADase reaction even in the absence of DTT. Conversely, replacing Ser-80 and Phe-201 in Rt6.2 with cysteines, as in Rt6.1, converted the thiol-independent Rt6.2 NADase to a thiol-dependent enzyme. Kinetic study of the NADase reaction revealed that the affinity of Rt6.1 for NAD and the rate of catalysis increased in the presence of DTT. Moreover, the NADase activity of Rt6.1 expressed on COS-7 cells was stimulated by culture supernatant from activated mouse macrophages, even in the absence of DTT. From these observations, we conclude that t!he Rt6.1 antigen has thiol-dependent NADase activity, and that Cys-80 and Cys-201 confer thiol sensitivity to Rt6.1 NADase. Our results also suggest that upon the interaction of T-cells expressing Rt6.1 with activated macrophages, the NADase activity of the antigen will be stimulated.  相似文献   

19.
Zhang L  Xu X  Luo Z  Shen D  Wu H 《Biochimie》2009,91(2):240-251
NAD-glycohydrolases (NADases) are ubiquitous enzymes that possess NAD glycohydrolase, ADPR cyclase or cADPR hydrolase activity. All these activities are attributed to the NADase-catalyzed cleavage of C-N glycosyl bond. AA-NADase purified from the venom of Agkistrodon acutus is different from the known NADases, for it consists of two chains linked with disulfide-bond(s) and contains one Cu(2+) ion. Here, we show that AA-NADase is not only able to cleave the C-N glycosyl bond of NAD to produce ADPR and nicotinamide, but also able to cleave the phosphoanhydride linkages of ATP, ADP and AMP-PNP to yield AMP. AA-NADase selectively cleaves the P-O-P bond of ATP, ADP and AMP-PNP without the cleavage of P-O-P bond of NAD. The hydrolysis reactions of NAD, ATP and ADP catalyzed by AA-NADase are mutually competitive. ATP is the excellent substrate for AA-NADase with the highest specificity constant k(cat)/K(m) of 293+/-7mM(-1)s(-1). AA-NADase catalyzes the hydrolysis of ATP to produce AMP with an intermediate ADP. AA-NADase binds with one AMP with high affinity determined by isothermal titration calorimetry (ITC). AMP is an efficient inhibitor against NAD. AA-NADase has so far been identified as the first unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities.  相似文献   

20.
Iota-toxin from Clostridium perfringens type E is an ADP-ribosylating toxin (ADPRT) that ADP-ribosylates actin, which is lethal and dermonecrotic in mammals. It is a binary toxin composed of an enzymatic component (Ia) and a binding component (Ib). Ia ADP-ribosylates G-actin at arginine 177, resulting in the depolymerization of the actin cytoskeleton. Here, we report on studies of the structure-function relationship by the crystal structures of Ia complexed with NADH and NADPH (at 1.8 A and 2.1 A resolution, respectively) and mutagenesis that map the active residues. The catalytic C-domain structure was similar to that of Bacillus cereus vegetative insecticidal protein (VIP2), which is an insect-targeted toxin, except for the EXE loop region. However, a significant structural difference could be seen in the N-domain, which interacts with Ib, suggesting an evolutionary difference between mammalian-targeted and insect-targeted ADPRT. The high resolution structure analysis revealed specific NAD conformation (a ring-like conformation of nicotinamide mononucleotide (NMN)) supported by Arg295, Arg296, Asn335, Arg352 and Glu380. Additionally, the mutagenesis study showed that the residues Tyr251, Arg295, Glu301, Ser338, Phe349, Arg352 and Glu380, including a newly identified one, are essential for NAD(+)-glycohydrolase (NADase) activity. At least one residue, Glu378, is an essential residue for ADP-ribosyltransferase (ARTase), but not for NADase. Consequently, the structural feature and these mutagenesis findings suggest that the catalytic mechanism of Ia proceeds via an Sn1-type reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号