首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.  相似文献   

2.
Respiratory morbidity (particularly COPD and asthma) can be influenced by short-term weather fluctuations that affect air quality and lung function. We developed a model to evaluate meteorological conditions associated with respiratory hospital admissions in the Shenandoah Valley of Virginia, USA. We generated ensembles of classification trees based on six years of respiratory-related hospital admissions (64,620 cases) and a suite of 83 potential environmental predictor variables. As our goal was to identify short-term weather linkages to high admission periods, the dependent variable was formulated as a binary classification of five-day moving average respiratory admission departures from the seasonal mean value. Accounting for seasonality removed the long-term apparent inverse relationship between temperature and admissions. We generated eight total models specific to the northern and southern portions of the valley for each season. All eight models demonstrate predictive skill (mean odds ratio = 3.635) when evaluated using a randomization procedure. The predictor variables selected by the ensembling algorithm vary across models, and both meteorological and air quality variables are included. In general, the models indicate complex linkages between respiratory health and environmental conditions that may be difficult to identify using more traditional approaches.  相似文献   

3.
The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.  相似文献   

4.
Particulate matter (PM) air pollution has been associated with cardiovascular and respiratory disease. Recent studies have proposed also a link with venous thromboembolism (VTE) risk. This study was aimed to evaluate the possible influence of air pollution-related changes on the daily flux of patients referring to the Emergency Department (ED) for VTE, dissecting the different effects of coarse and fine PM. From July 1(st), 2007, to June 30(th), 2009, data about ED accesses for VTE and about daily concentrations of PM air pollution in Verona district (Italy) were collected. Coarse PM (PM(10-2.5)) was calculated by subtracting the finest PM(2.5) from the whole PM(10). During the index period a total of 302 accesses for VTE were observed (135 males and 167 females; mean age 68.3 ± 16.7 years). In multiple regression models adjusted for other atmospheric parameters PM(10-2.5), but not PM(2.5), concentrations were positively correlated with VTE (beta-coefficient = 0.237; P = 0.020). During the days with high levels of PM(10-2.5) (≥ 75(th) percentile) there was an increased risk of ED accesses for VTE (OR 1.69 with 95%CI 1.13-2.53). By analysing days of exposure using distributed lag non-linear models, the increase of VTE risk was limited to PM(10-2.5) peaks in the short-term period. Consistently with these results, in another cohort of subjects without active thrombosis (n = 102) an inverse correlation between PM(10-2.5) and prothrombin time was found (R = -0.247; P = 0.012). Our results suggest that short-time exposure to high concentrations of PM(10-2.5) may favour an increased rate of ED accesses for VTE through the induction of a prothrombotic state.  相似文献   

5.
Particulate air pollution (PM) is an important environmental health risk factor for many different diseases. This is indicated by numerous epidemiological studies on associations between PM exposure and occurrence of acute respiratory infections, lung cancer and chronic respiratory and cardiovascular diseases. The biological mechanisms behind these associations are not fully understood, but the results of in vitro toxicological research have shown that PM induces several types of adverse cellular effects, including cytotoxicity, mutagenicity, DNA damage and stimulation of proinflammatory cytokine production. Because traffic is an important source of PM emission, it seems obvious that traffic intensity has an important impact on both quantitative and qualitative aspects of ambient PM, including its chemical, physical and toxicological characteristics. In this review, the results are summarized of the most recent studies investigating physical and chemical characteristics of ambient and traffic-related PM in relation to its toxicological activity. This evaluation shows that, in general, the smaller PM size fractions (相似文献   

6.
Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch (Betula) pollen, urban air pollutants NO2, O3 and PM10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006–2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO2 and PM10) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air pollution. Our study shows that LWTs represent a useful tool for integrated daily air quality forecasting/warning.  相似文献   

7.
Daily levels of particulate matter (PM) in the ambient air (PM 2.5 and PM 10) were measured in a northern city of Thailand (Chiang Mai) from March 1998 to October 1999. Twenty-four-hour air particulate matter samples were collected each day with Airmetric Minivol portable air samplers. Monthly averages of PM 2.5 from four stations in Chiang Mai varied from 15.39 to 138.31microg/m(3) and 27.29 to 173.40 microg/m(3) for PM 10. The PM 2.5 annual average was 58.48 mg/m(3) and PM 10, 86.38 microg/m(3). Daily PM 2.5 (24h values) during the winter months in Chiang Mai frequently exceeded 200-300 microg/m(3). The maximum concentrations of PM 2.5 (24h average) in Chiang Mai air from December 1998 to April 1999 were 2.8-, 3.5-, 4.2-, 6.5- and 3.2-fold higher than the US Environmental Protection Agency (US EPA), PM 2.5, 24h standard of 65 microg/m(3). From May to October, the mean 24h levels of PM 2.5 and PM 10 were at acceptable levels. The data shows that during the winter season (December to March), levels of PM 2.5 and PM 10 in the Chiang Mai atmosphere are very high, and there may be significant health implications associated with these high concentrations. During the summer season, the fine particles were generally within the acceptable levels. To our knowledge, these are the first measurements of PM 2.5 to be reported for the city of Chiang Mai and they indicate considerable ambient fine particle exposures to the Chiang Mai population. In addition, dichloromethane extracts of airborne particulate matter PM 2.5 or PM 10 collected in the months of winter in the city of Chiang Mai were mutagenic to Salmonella typhimurium strain TA100 without metabolic activation. The mutagenicity appeared to track particle concentrations and increased in the presence of S9 mix.  相似文献   

8.
As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OP(AA) m(-3)) and glutathione (OP(GSH) m(-3)) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM(1.9-10.2). However, when expressed per unit mass of particles OP(AA) μg(-1) showed no significant dependence upon particle size, while OP(GSH) μg(-1) had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.  相似文献   

9.
Traffic-related air pollution (TRAP), including particulate matter (PM) in respirable coarse and fine size fractions (PM10 and PM2.5), is known to have exposure effects on human health and environment. Real-time PM10 and PM2.5 concentrations were collected from the study locations in Bangkok, Thailand, using TSI AM510 particle counters. Temperature and % relative humidity (%RH) were also collected. Data were compared to data from the closest station of the Pollution Control Department (PCD), Thailand. Real-time mean concentration varied from 86 to 1107 µg/m3 (PM10) and varied from 25 to 664 µg/m3 (PM2.5). In addition, real-time mean PM10 (223.1 µg/m3) was nearly four times greater than that measured by the PCD station, 60 µg/m3. Temperature and %RH from real-time air monitoring and PCD station were comparable. In each study location (five locations, two in morning and afternoon/evening), there were significant positive correlations between PM10 and PM2.5 concentrations and significant negative correlations between temperature and RH%. Results suggested that outdoor TRAP via measured real-time PM concentrations were more realistic exposure concentration estimates among street vendors as related to respiratory and other symptoms than data obtained from PCD station. Nevertheless, PM10 as measured by the PCD station might be a reasonable surrogate for estimated outdoor PM2.5 exposure.  相似文献   

10.
H2S, PM2.5, O3, NO2, SO2 and meteorological parameters such as temperature, relative humidity, precipitation, wind speed and wind direction were measured simultaneously in an eastern Croatian town called Slavonski Brod during the season winter/spring 2010. Emissions from the nearby cross-border (Bosnia and Herzegovina) oil refinery were identified as sources of temporary elevated concentrations of H2S. The maximum daily averages of PM2.5 concentrations during the winter period were as high as 240 microg m(-3) which is a value 10 times greater than the threshold prescribed by the World Health Organization. It is considered that the heating season, dense traffic, intense industrial activities and temperature inversion during stable weather conditions are prevailing contributors to higher winter concentrations of PM2.5. The results of the principal component analysis technique (PCA) have shown that lower air temperature, lower wind speed and higher relative humidity play a significant role in the winter pollution episodes. From a public health point of view, implementation of measures aimed at reducing the levels of H2S and PM2.5 should be considered.  相似文献   

11.
Santiago de Chile has a high level of air pollution with ozone (O3), carbon monoxide (CO) and particles equal or smaller than 10 microns (PM10) usually exceeding the accepted standards. This situation should be noxious for the exposed population and particularly--in the case of O3 and PM10--for the respiratory system. However, such an effect is rather difficult to demonstrate and it depends on the type of population under study.  相似文献   

12.
空气污染作为一种有害的环境因素,对人类及动物的生理、心理均有影响.在鸟类中,信鸽(Columba livia)是研究空气污染影响的理想模型.为探究空气污染的行为学效应,通过收集并筛选2018和2019年成都市信鸽协会春秋两个季节举办的64场赛事共285羽参赛5场及以上的信鸽不同空距等级下的归巢速度,利用混合线性模型分析...  相似文献   

13.
To assess differences in the lag-effect pattern in the relationship between particulate matter less than 10 microm in aerodynamic diameter (PM(10)) and cause-specific mortality in Seoul, Korea, from January 1995 to December 1999, we performed a time-series analysis. We used a generalized additive Poisson regression model to control for time trends, temperature, humidity, air pressure, and the day of the week. The PM(10) effect was estimated on the basis of the time-series models using the 24-h means and the quadratic distributed-lag models using a cumulative 6-day effect. One interquartile range increase in the 6-day cumulative mean of PM(10) (43.12 microg/m(3)) was associated with an increase in non-accidental deaths [3.7%, 95% confidence interval (CI): 2.1, 5.4], respiratory disease (13.9%, 95% CI: 6.8, 21.5), cardiovascular disease (4.4%, 95% CI: -1.0, 9.0), and cerebrovascular disease (6.3%, 95% CI: 2.3, 10.5). We found the following patterns in the disease-specific lag-effect window: respiratory mortality was more affected by air pollution level on the day of death, whereas cardiovascular deaths were more affected by the previous day's air pollution level. Cerebrovascular deaths were simultaneously associated with the air pollution levels of the same day and the previous day. The patterns in the lag effect from the distributed-lag models were similar to those of a series of time-series models with 24-h means. These results contribute to our understanding of how exposure to air pollution causes adverse health effects.  相似文献   

14.
In air pollution epidemiology, there is a growing interest in estimating the health effects of coarse particulate matter (PM) with aerodynamic diameter between 2.5 and 10 μm. Coarse PM concentrations can exhibit considerable spatial heterogeneity because the particles travel shorter distances and do not remain suspended in the atmosphere for an extended period of time. In this paper, we develop a modeling approach for estimating the short-term effects of air pollution in time series analysis when the ambient concentrations vary spatially within the study region. Specifically, our approach quantifies the error in the exposure variable by characterizing, on any given day, the disagreement in ambient concentrations measured across monitoring stations. This is accomplished by viewing monitor-level measurements as error-prone repeated measurements of the unobserved population average exposure. Inference is carried out in a Bayesian framework to fully account for uncertainty in the estimation of model parameters. Finally, by using different exposure indicators, we investigate the sensitivity of the association between coarse PM and daily hospital admissions based on a recent national multisite time series analysis. Among Medicare enrollees from 59 US counties between the period 1999 and 2005, we find a consistent positive association between coarse PM and same-day admission for cardiovascular diseases.  相似文献   

15.
春季城区道路不同绿地配置模式对大气颗粒物的削减作用   总被引:1,自引:0,他引:1  
杨貌  张志强  陈立欣  刘辰明  邹瑞 《生态学报》2016,36(7):2076-2083
研究城市道路不同绿地类型对大气颗粒物的吸附削减作用,是提高城市绿地大气污染治理功能绿地配置模式优化的重要基础。以位于北京市海淀区的3条典型主干道道路为对象,选取乔木、灌木、草本、乔-灌、乔-草、乔-灌-草6种典型绿地配置模式,在大气颗粒物污染严重以及城市植被发芽、开花、展叶完成的春季(3月中旬至4月上旬),采用Dustmate便携式颗粒物采样器和NK4500手持自动气象仪分1.5m和3m两个高度同步测定距污染源不同位置的大气颗粒物浓度与小气候因子,分析不同绿地配置模式对颗粒物削减能力的差异及其主要影响因素。研究结果表明:复合配置模式比单一配置模式下空气颗粒物浓度稳定程度高,其主要受风速与空气相对湿度的影响;大气颗粒物粒径越大绿地对其削减作用越强;地表覆盖程度是影响不同绿地配置模式对大气颗粒物垂直削减的关键因素,地表覆盖越好垂直削减效果越好,且垂直削减率与温度成正相关关系;草本、灌木对大气颗粒物的垂直削减作用比其他4种配置模式更好;由于受植被郁闭度、疏透度以及配置种类的综合影响,乔-草、灌木绿地配置对大气颗粒物的水平削减作用比其他4种模式更好。  相似文献   

16.
Epidemiological studies have associated high levels of airborne particulate matter (PM) with increased respiratory diseases. In order to investigate the mechanisms of air pollution-induced lung toxicity in humans, human bronchial epithelial cells (16HBE) were exposed to various concentrations of particles smaller than 2.5 μm (PM2.5) collected from Beijing, China. After observing that PM2.5 decreased cell viability in a dose-dependent manner, we first used Illumina RNA-seq to identify genes and pathways that may contribute to PM2.5-induced toxicity to 16HBE cells. A total of 539 genes, 283 up-regulated and 256 down-regulated, were identified to be significantly differentially expressed after exposure to 25 μg/cm2 PM2.5. PM2.5 induced a large number of genes involved in responses to xenobtiotic stimuli, metabolic response, and inflammatory and immune response pathways such as MAPK signaling and cytokine-cytokine receptor interaction, which might contribute to PM2.5-related pulmonary diseases. We then confirmed our RNA-seq results by qPCR and by analysis of IL-6, CYP1A1, and IL-8 protein expression. Finally, ELISA assay demonstrated a significant association between exposure to PM2.5 and secretion of IL-6. This research provides a new insight into the mechanisms underlying PM2.5-induced respiratory diseases in Beijing.  相似文献   

17.
Exposure to specific airborne bacteria indoors is linked to infectious and noninfectious adverse health outcomes. However, the sources and origins of bacteria suspended in indoor air are not well understood. This study presents evidence for elevated concentrations of indoor airborne bacteria due to human occupancy, and investigates the sources of these bacteria. Samples were collected in a university classroom while occupied and when vacant. The total particle mass concentration, bacterial genome concentration, and bacterial phylogenetic populations were characterized in indoor, outdoor, and ventilation duct supply air, as well as in the dust of ventilation system filters and in floor dust. Occupancy increased the total aerosol mass and bacterial genome concentration in indoor air PM(10) and PM(2.5) size fractions, with an increase of nearly two orders of magnitude in airborne bacterial genome concentration in PM(10). On a per mass basis, floor dust was enriched in bacterial genomes compared to airborne particles. Quantitative comparisons between bacterial populations in indoor air and potential sources suggest that resuspended floor dust is an important contributor to bacterial aerosol populations during occupancy. Experiments that controlled for resuspension from the floor implies that direct human shedding may also significantly impact the concentration of indoor airborne particles. The high content of bacteria specific to the skin, nostrils, and hair of humans found in indoor air and in floor dust indicates that floors are an important reservoir of human-associated bacteria, and that the direct particle shedding of desquamated skin cells and their subsequent resuspension strongly influenced the airborne bacteria population structure in this human-occupied environment. Inhalation exposure to microbes shed by other current or previous human occupants may occur in communal indoor environments.  相似文献   

18.
To conceptualize strategies for regional environmental management in the Trier region, extensive urban meteorological measurements were undertaken. Weather stations from the German Weather Service and the state Pollution Monitoring Network were used as well as a number of our automatic meteorological stations and a mobile platform (instrumented van). The bioclimatic conditions in the city of Trier are affected by the valley of the Moselle River. Both the wind field and the thermal stratification in the urban boundary layer showed local characteristics especially marked in the diurnal variation and monthly mean concentrations of the air pollutants nitrogen and sulfurdioxide (NO(x), SO(2)), ozone (O(3)) and particle matter (PM10). Catabatic flows from the side valleys partially reduce the urban heat island and increase the ozone concentration in the city in the evening during calm weather conditions. The impact-based air-quality index is mostly determined by a high PM10 concentration. Strategies to reduce air pollutions in the Trier region are discussed.  相似文献   

19.
Airborne particles and ammonia were monitored in horse stalls managed under four conditions. Two ventilation rates, high (27 air changes per h) and low (5 air changes per h) and two bedding types, paper and straw, were employed. At both ventilation rates, the number of airborne particles generated while the stalls were mucked out was higher with straw than with paper. Particles were more efficiently cleared at the higher ventilation rate in both the straw and paper stalls. Ammonia measurements reflected an accumulation over time. In the stalls with low ventilation, ammonia levels were significantly higher than in those stalls with high ventilation regardless of bedding type. Management decisions and their relationships to respiratory disorders are discussed.  相似文献   

20.
Airborne particles and ammonia were monitored in horse stalls managed under four conditions. Two ventilation rates, high (27 air changes per h) and low (5 air changes per h) and two bedding types, paper and straw, were employed. At both ventilation rates, the number of airborne particles generated while the stalls were mucked out was higher with straw than with paper. Particles were more efficiently cleared at the higher ventilation rate in both the straw and paper stalls. Ammonia measurements reflected an accumulation over time. In the stalls with low ventilation, ammonia levels were significantly higher than in those stalls with high ventilation regardless of bedding type. Management decisions and their relationships to respiratory disorders are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号