首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoplasma acidophilum HO-62 was grown at different pHs and temperatures, and its polar lipid compositions were determined. Although the number of cyclopentane rings in the caldarchaeol moiety increased when T. acidophilum was cultured at high temperature, the number decreased at low pHs. Glycolipids, phosphoglycolipids, and phospholipids were analyzed by high-performance liquid chromatography with an evaporative light-scattering detector. The amount of caldarchaeol with more than two sugar units on one side increased under low-pH and high-temperature conditions. The amounts of glycolipids increased and those of phosphoglycolipids decreased under these conditions. The proton permeability of the liposomes obtained from the phosphoglycolipids that contained two or more sugar units was lower than that of the liposomes obtained from the phosphoglycolipids that contained one sugar unit. From these results, we propose the hypothesis that T. acidophilum adapts to low pHs and high temperatures by extending sugar chains on their cell surfaces, as well as by varying the number of cyclopentane rings.  相似文献   

2.
Several novel neutral glycolipids (GL-1a, GL-1b, GL-2a, GL-2b and GL-2c) were isolated from Thermoplasma acidophilum by high-performance liquid chromatography using phenylboronic acid-silica and preparative thin-layer chromatography. The tentative structures of these lipids were characterized by the combination of gas-liquid chromatography, the methylation procedure, and (1)H-NMR and FAB-mass spectrometries. The lipophilic portion of the neutral glycolipids was composed of a simple molecular species named caldarchaeol (dibiphytanyl-diglycerol tetraether). The sugar moieties of these glycolipids were composed of gulose and glucose which formed monosaccharide residues on one side or both sides of the core lipids. Gulose was attached to the terminal glycerol OH group of the core lipid with a beta-configuration and glucose being attached with an alpha-configuration. The proposed structure of GL-1a was gulosylcaldarchaeol and that of GL-1b was glucosylcaldarchaeol. The structures of GL-2a, GL-2b, and GL-2c were the analogs of the caldarchaeol derivatives attached by a variety of gulosyl residues or glucosyl residues on both sides of the terminal OH groups.  相似文献   

3.
A novel phosphoglycolipid (GPL-K) was isolated from Thermoplasma acidophilum (ATCC 27658). The chemical components of GPL-K were analyzed by gas liquid chromatography and GC-MS. The sugar moiety of GPL-K and its anomeric region were analyzed by NMR assignment. The core lipid of GPL-K was caldarchaeol, and its main hydrocarbon chains were acyclic and monocyclic C(40) biphytanyl. The polar head groups were alpha-glucose and glycerophosphate. The negative FAB-MS spectrum of GPL-K confirmed that the lipid peak of m/z 1614 consists of a caldarchaeol (including one cyclopentane ring), a hexose sugar, and a glycerophosphate. We have proposed the tentative structure of GPL-K.  相似文献   

4.
Lipids of Thermoplasma acidophilum   总被引:23,自引:12,他引:11       下载免费PDF全文
Cells of Thermoplasma acidophilum contain about 3% total lipid on a dry weight basis. Total lipid was found to contain 17.5% neutral lipid, 25.1% glycolipid, and 56.6% phospholipid by chromatography on silicic acid. The lipids contain almost no fatty acid ester groups but appear to have long-chain alkyl groups in ether linkages to glycerol. The phospholipid fraction includes a major component which represents about 80% of the lipid phosphorus and 46% of the total lipids. We believe this component to be a long-chain isopranol glycerol diether analogue of glycerolphosphoryl monoglycosyl diglyceride. The glycolipids appear to contain isopranol diether analogues. Several components of the complex, neutral lipid fraction have been identified as hydrocarbons, vitamin K(2)-7, and isopranol glycerol diether analogues. Sterols are present in the neutral lipids but do not appear to be synthesized by the organism.  相似文献   

5.
Column chromatography (on cellulose, silicic acid, and Florisil) and thin-layer chromatography were employed for the separation and purification of lipid fractions from normal and Gaucher spleens. A new hydrolysis procedure, followed by paper chromatography, was used for identification of sugar moieties. A nonhydrolytic combined colorimetric procedure, with anthrone and orcinol, was used for the estimation of glucose and galactose separately in glycolipids. The limitations of this method were examined. Spleens from two control subjects and three patients with Gaucher's disease have been examined in detail. In all Gaucher spleens, the predominant feature was the massive acccumulation of glucocerebroside; neutral ceramide oligohexoside levels were probably within the normal range, as were other neutral lipids and phospholipids. In one case examined for gangliosides, these were increased twentyfold. One Gaucher spleen, in which others had reported that the stored "cerebroside" contained predominantly lactose as the saccharide moiety, has been examined in detail and it has been established that the stored material was, in fact, glucocerebroside, ceramide lactoside levels not being significantly elevated. In a further nine cases glucose was the major sugar detected in the splenic lipids.  相似文献   

6.
Black lipid membranes were formed of tetraether lipids from Thermoplasma acidophilum and compared to the bilayer forming lipids diphytanoylphosphatidylcholine and diphythanylglucosylglycerol. Bilayer-forming lipids varied in thickness of black lipid membranes due to the organic solvent used. Measurements of the specific membrane capacitance (Cm = 0.744 microF/cm2) showed that the membrane-spanning tetraether lipids from Thermoplasma acidophilum form a monolayer of a constant thickness of 2.5-3.0 nm no matter from which solvent. This finding corresponds to the results of Gliozzi et al. for the lipids of another archaebacterium, Sulfolobus solfataricus. Black lipid membranes were formed at room temperature with a torus from bilayer-forming lipids, however, the torus could also be formed by the tetraether-lipid itself at room temperature and at defined concentration. In these stable black lipid membranes, conductance was measured in the presence of valinomycin, nonactin, and gramicidin. At 10(-7) M concentration, valinomycin mediated higher conductance in membranes from tetraether lipids (200-1200 microS/cm2) than from bilayer-forming lipids (125-480 microS/cm2). Nonactin, at 10(-6) M concentration, mediated a 6-fold higher conductance in a tetraether lipid membrane than in a bilayer, whereas conductance, in the presence of 5 x 10(-11) M gramicidin could reach higher values in bilayers than in tetraether lipid monolayers of comparable thickness. Monensin did not increase the conductance of black lipid membranes from tetraether lipids under all conditions applied in our experiments. Poly(L-lysine) destroyed black lipid membranes. Lipopolysaccharides from Thermoplasma acidophilum were not able to form stable black lipid membranes by themselves. The lipopolysaccharide complexes from Thermoplasma acidophilum and from Escherichia coli decreased the valinomycin-mediated conductance of monolayer and bilayer membranes. This influence was stronger than that of the polysaccharide dextran.  相似文献   

7.
The complex lipids and fatty acids of the seven type species of green bacteria and three strains of Chloroflexus aurantiacus were analyzed. The green bacteria contained lipids that behaved as cardiolipin and phosphatidylglycerol on thin-layer chromatography. They did not contain phosphatidylethanolamine or phosphatidylserine. Similarly, Chloroflexus contained lipids that behaved as phosphatidylglycerol and phosphatidylinositol on thin-layer chromatography and did not contain phosphatidylethanolamine or phosphatidylserine. The green bacteria contained glycolipids I and II of Constantopoulos and Bloch (monogalactosyldiglyceride and a galactose- and rhamnose-containing diglyceride). Chloroflexus exhibited galactose-containing glycolipids that behaved identically with the mono- and digalactosyldiglycerides of spinach on thin-layer chromatography, and each contained galactose as well as at least one other sugar. The fatty acids of both groups of bacteria consisted entirely of saturated and monounsaturated fatty acids. In the green bacteria, myristic, palmitic, and hexadecenoic acids predominated. In Chloroflexus, palmitic, stearic, and oleic acids predominated. The positions of the double bonds in the monounsaturated fatty acids of Chloroflexus indicated synthesis by the anaerobic pathway. The lipid analyses suggest a close relationship between the green bacteria and Chloroflexus and further suggest that these groups of photosynthetic bacteria are more closely related to the blue-green algae than are the purple bacteria.  相似文献   

8.
A method for preparing glycerophosphoesters from ether phospholipids by dealkylation with boron trichloride (BCl3) is described. Treatment of ether phospholipids in chloroform with BCl3 for 30 min at room temperature yielded almost quantitatively the corresponding glycerophosphoesters retaining the intact polar head group of the ether phospholipids. Thus, glycerophosphocholine, glycerophosphoinositol, glycerophosphoglycerol, glycerophosphoserine, glycerophosphate, and glycerophosphoethanolamine were prepared from the diether analogs of phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, phosphatidylserine, and phosphatidic acid, and the tetraether analog of phosphatidylethanolamine, respectively. BCl3 also cleaved diacyl, alkyl-acyl, and alk-1-enyl-acyl forms of phospholipids to yield corresponding glycerophosphoesters. The glycerophosphoesters were separated more rapidly by cellulose thin-layer chromatography with the same solvent system as in paper chromatography. This method is of great use for structure determination of glycerophosphoester backbones of ether phospholipids, analogous to the mild alkaline methanolysis of diacyl form of phospholipids, as well as for the analysis of alkyl chains. It is, however, not applicable to glycolipids because of cleavage of glycosidic bonds by BCl3.  相似文献   

9.
Polar lipid biosynthesis in the thermoacidophilic archaeon Thermoplasma acidophilum was analyzed using terbinafine, an inhibitor of tetraether lipid biosynthesis. Cells of T. acidophilum were labeled with [(14)C]mevalonic acid, and their lipids were extracted and analyzed by two-dimensional thin-layer chromatography. Lipids labeled with [(14)C]mevalonic acid, [(14)C]glycerol, and [(32)P]orthophosphoric acid were extracted and hydrolyzed under different conditions to determine the structure of polar lipids. The polar lipids were estimated to be archaetidylglycerol, glycerophosphatidylcaldarchaetidylglycerol, caldarchaetidylglycerol, and beta- l-gulopyranosylcaldarchaetidylglycerol, the main polar lipid of T. acidophilum. Pulse and chase experiments with terbinafine revealed that one tetraether lipid molecule is synthesized by head-to-head condensation of two molecules of archaetidylglycerol and that a sugar group of tetraether phosphoglycolipid is expected to attach to the tetraether lipid core after head-to-head condensation in T. acidophilum. A precursor accumulated in the presence of terbinafine with a fast-atom-bombardment mass spectrometry peak m/z 806 was compatible with archaetidylglycerol. The relative height of the peak m/z 806 decreased after removal of the inhibitor. The results suggest that most of the precursor, archaetidylglycerol, is in fully saturated form.  相似文献   

10.
The human pathogen Mycoplasma pneumoniae has a very small genome but with many yet not identified gene functions, e.g. for membrane lipid biosynthesis. Extensive radioactive labelling in vivo and enzyme assays in vitro revealed a substantial capacity for membrane glycolipid biosynthesis, yielding three glycolipids, five phosphoglycolipids, in addition to six phospholipids. Most glycolipids were synthesized in a cell protein/lipid-detergent extract in vitro; galactose was incorporated into all species, whereas glucose only into a few. One (MPN483) of the three predicted glycosyltransferases (GTs; all essential) was both processive and promiscuous, synthesizing most of the identified glycolipids. These enzymes are of a GT-A fold, similar to an established structure, and belong to CAZy GT-family 2. The cloned MPN483 could use both diacylglycerol (DAG) and human ceramide acceptor substrates, and in particular UDP-galactose but also UDP-glucose as donors, making mono-, di- and trihexose variants. MPN483 output and processitivity was strongly influenced by the local lipid environment of anionic lipids. The structure of a major beta1,6GlcbetaGalDAG species was determined by NMR spectroscopy. This, as well as other purified M. pneumoniae glycolipid species, is important antigens in early infections, as revealed from ELISA screens with patient IgM sera, highlighting new aspects of glycolipid function.  相似文献   

11.
The basic core structure of archaeal membrane lipids is 2,3-di-O-phytanylglyceryl phosphate, which is formed by reduction of 2,3-di-O-geranylgeranylglyceryl phosphate. This reaction is the final committed step in the biosynthesis of archaeal membrane lipids and is catalyzed by digeranylgeranylglycerophospholipid reductase (DGGGPL reductase). The putative DGGGPL reductase gene (Ta0516m) of Thermoplasma acidophilum was cloned and expressed. The purified recombinant enzyme appeared to catalyze the formation of 2,3-di-O-phytanylglyceryl phosphate from 2,3-di-O-geranylgeranylglyceryl phosphate, which confirmed that the Ta0516m gene of T. acidophilum encodes DGGGPL reductase. The stereospecificity in reduction of 2,3-di-O-phytylglyceryl phosphate by the recombinant reductase appeared to take place through addition of hydrogen in a syn manner by analyzing the enzyme reaction product by NMR spectroscopy.  相似文献   

12.
Bacterial lipid macroamphiphiles extracted with phenol/water can be purified in one step by hydrophobic interaction chromatography. Lipids and the major part of protein are separated from macroamphiphiles during phenol/water extraction. Coextracted nucleic acids, polysaccharides, and residual protein are effectively removed by column chromatography on octyl-Sepharose whereby macroamphiphiles are primarily adsorbed and later eluted with a buffered propanol gradient. The procedure is applicable to macroamphiphiles with various lipid structures as was demonstrated using the diacylglycerol-containing lipoglycan of Micrococcus luteus, the lipid A-containing lipopolysaccharide of Salmonella typhimurium, and the diglyceryl tetraether lipoglycans of Thermoplasma acidophilum and Thermoplasma volcanicum. On elution from octyl-Sepharose, separation into molecular species of different compositions was observed with the lipopolysaccharide of S. typhimurium and the lipoglycan of T. volcanicum. It was also shown that, after phenol/water extraction, membrane lipids are completely recoverable from the phenol layer, which makes it possible to isolate lipids along with macroamphiphiles from the same sample of bacteria.  相似文献   

13.
The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-(14)C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum.  相似文献   

14.
Cyanidium caldarium was grown at 20 and 55 C and harvested during exponential growth phase. Lipids were extracted and separated by silicic acid column and thin layer chromatography. The major glycolipids were identified as mono- and digalactosyl diglyceride and sulfolipid. Major phospholipids were identified as phosphatidyl choline and phosphatidyl ethanolamine. The cells grown at 20 C contained significantly larger quantities of these glycolipids and phospholipids than cells grown at 55 C.  相似文献   

15.
T Baba  H Minamikawa  M Hato    T Handa 《Biophysical journal》2001,81(6):3377-3386
Proton permeation rates across membranes of a synthetic branch-chained glycolipid, 1,3-di-O-phytanyl-2-O-(beta-D-maltotriosyl)glycerol (Mal3(Phyt)2) as well as a branch-chained phospholipid, diphytanoylphosphatidylcholine (DPhPC) were lower than those of straight-chained lipids such as egg yolk phosphatidylcholine (EPC) by a factor of approximately 4 at pH 7.0 and 25 degrees C. To examine whether degrees of water penetration and molecular motions in Mal3(Phyt)2 membranes can account for the lower permeability, nanosecond time-resolved fluorescence spectroscopy was applied to various membranes of branch-chained lipids (Mal3(Phyt)2, DPhPC, and a tetraether lipid from an extremely thermoacidophilic archaeon Thermoplasma acidophilum), as well as straight-chained lipids (EPC, 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), and digalactosyldiacylglycerol (DGDG)) using several fluorescent lipids. Degrees of hydration of glycolipids, Mal3(Phyt)2, and DGDG were lower than those of phospholipids, EPC, POPC, and DPhPC at the membrane-water interfaces. DPhPC showed the highest hydration among the lipids examined. Meanwhile, rotational and lateral diffusive motions of the fluorescent phospholipid in branch-chained lipid membranes were more restricted than those in straight-chained ones. The results suggest that the restricted motion of chain segments rather than the lower hydration accounts for the lower proton permeability of branch-chained lipid membranes.  相似文献   

16.
A particulate membrane preparation fromSaccharomyces cerevisiae catalyzed the incorporation of mannose from GDP-mannose into lipids that were extractable in chloroform-methanol. One lipid has been previously characterized as dolichyl phosphomannose. Another one was purified by chromatography on silicic acid, DEAE-cellulose and Sephadex LH-20 and found to be alkali unstable. The lipid moiety was shown to be dolichol and the glycosydic part contained mannose, glucose and glucosamine.Radioactive mannose was also incorporated at a slower rate into more polar compounds. They were soluble in chloroform-methanol-water and were seen to liberate neutral oligosaccharides after alkaline hydrolysis.Radioactive mannose was also incorporated into substances which behave chemically as glycoproteins since they were insoluble in organic solvents, water and trichloroactic acid. Pronase treatment of the trichloroacetic acidinsoluble material released water-soluble oligosaccharides.When the particulate preparation which had been extracted with chloroform-methanol at –20 C, was incubated with GDP-(U-14C)mannose, radioactivity was incorporated into glycolipids that were soluble in chloroform-methanol-water and into glycoproteins. This result suggests that at least part of the mannose was transferred to endogenous acceptors independent of dolichyl phosphomannose.  相似文献   

17.
The lactoperoxidase-mediated radioiodination has been applied to study the transbilayer distribution of phospho- and glycolipids in Acholeplasma laidlawii membranes. After radioiodination, about 5% of the 125I-iodine was found in membrane lipids. A comparison of the labeling intensities of the various lipid species between iodinated intact cells and isolated membranes revealed that the glycolipids monoglucosyldiglyceride and diglucosyldiglyceride are located almost exclusively in the outer half of the bilayer, whereas the phospholipids phosphatidylglycerol and diphosphatidylglycerol as well as the phosphoglycolipids glycerophosphoryl-diglucosyldiglyceride and glycerophosphoryl-monoglucosyldiglyceride are almost equally distributed in the outer and inner halves of A. laidlawii membranes.  相似文献   

18.
Human platelet membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa), which have been proposed to be subunits of a receptor for fibrinogen, were purified from Triton X-100-solubilized platelet membranes by affinity chromatography on a concanavalin A (Con A)-Sepharose column followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Compositional analyses of the purified glycoproteins showed that GPIIb and GPIIIa contain 15% and 18% carbohydrate by weight, respectively, which consists of galactose, mannose, glucosamine, fucose, and sialic acid. This suggested that these glycoproteins contained N-linked carbohydrate chains. The carbohydrate chains were released from each glycoprotein by hydrazinolysis and then fractionated by ion-exchange chromatography on a Mono Q column. From each glycoprotein, mono-, di-, and trisialylated and neutral oligosaccharide fractions were obtained. The structures of these oligosaccharides were investigated by means of compositional and methylation analyses and digestion by exoglycosidase, and their reactivities to immobilized lectins were also examined. The neutral oligosaccharides, which comprised about 14% of the total oligosaccharides released from GPIIb and about 52% of that from GPIIIa, were found to be of the high mannose-type, in that they contained 5 or 6 mannose residues. On the other hand, a major part of the acidic oligosaccharides was found to consist of typical bi- and triantennary complex-type sugar chains, and much smaller amounts of tetraantennary complex-type sugar chains, and complex-type sugar chains with a fucosyl residue at a N-acetylglucosamine residue in the peripheral portion or a bisecting N-acetylglucosamine at a beta-mannosyl residue in the core portion were also detected. In conclusion, we found that GPIIb contained mainly complex-type sugar chains, whereas high mannose-type sugar chains were the predominant carbohydrate units in GPIIIa, and that the detected differences in the carbohydrate moieties of GPIIb and GPIIIa were quantitative but not qualitative.  相似文献   

19.
Abstract The Antarctic methanogen Methanococcoides burtonii contained only diether phospholipids. These membrane components were analysed by gas chromatography and gas chromatography mass spectrometry. Of particular interest was the occurrence of unsaturated diether lipids in M. burtonii ; unsaturated ether lipids accounted for 57% of the diether phospholipids. To our knowledge, unsaturated ether lipids have not been previously reported in a methanogen. The presence of the unsaturated ether lipids in M. burtonii is probably the result of temperature adaptation by the bacterium. It may be possible to use these components as a chemical signature for methanogens in Antarctic and Southern Ocean environments.  相似文献   

20.
《Insect Biochemistry》1989,19(2):153-161
The lipophorin of adult females of Rhodnius prolixus was radioactively labelled with 32P exclusively in the phospholipid moiety and purified on a KBr ultracentrifugation gradient. The density of purified [32P]phospholipid labelled lipophorin on the fifth day after a blood meal was 1.1211 ± 0.0017 g/ml. By weight it contained 51.7% protein, 0.7% sugar and 47.6% lipid. The protein moiety was composed of three apoproteins of 226 ± 11, 86 ± 2 and 16 ± 1 kDa. Mannose and N-acetylglucosamine were the only sugars detected. Among the lipids, 66.3% were neutral lipids and 33.8% were phospholipids. Analysis by thin-layer chromatography showed that in the total phospholipids fraction 32P was distributed as follows: phosphatidylethanolamine (54.4%), phosphatidylcholine (44.7%), cardiolipin (2.1%), phosphatidylserine (0.7%), phosphatidylinositol (0.4%), sphingomyelin (0.3%) and phosphatidic acid (0.2%). The total phosphate content was 0.53 ± 0.03 nmol/μg of protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号