首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef-) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef- replication in CD4(+)-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef- replication and facilitate enhanced wild-type replication in naive T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef- in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.  相似文献   

2.
Although human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells can produce various cytokines that suppress HIV-1 replication or modulate anti-HIV-1 immunity, the extent to which HIV-1-specific CD8+ T cells produce cytokines when they recognize HIV-1-infected CD4+ T cells in vivo still remains unclear. We first analyzed the abilities of 10 cytotoxic T-lymphocyte (CTL) clones specific for three HIV-1 epitopes to produce gamma interferon, macrophage inflammatory protein 1beta, and tumor necrosis factor alpha after stimulation with epitope peptide-pulsed cells. These CTL clones produced these cytokines in various combinations within the same specificity and among the different specificities, suggesting a functional heterogeneity of HIV-1-specific effector CD8+ T cells in cytokine production. In contrast, the HIV-1-specific CTL clones for the most part produced a single cytokine, without heterogeneity of cytokine production among the clones, after stimulation with HIV-1-infected CD4+ T cells. The loss of heterogeneity in cytokine production may be explained by low surface expression of HLA class I-epitope peptide complexes. Freshly isolated HIV-1-specific CD8+ T cells with an effector/memory or memory phenotype produced much more of the cytokines than the same epitope-specific CTL clones when stimulated with HIV-1-infected CD4+ T cells. Cytokine production from HIV-1-specific memory/effector and memory CD8+ T cells might be a critical event in the eradication of HIV-1 in HIV-1-infected individuals.  相似文献   

3.
4.
5.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cells provide an important defense in controlling HIV-1 replication, particularly following acquisition of infection. To delineate the breadth and potency of these responses in patients upon initial presentation and before treatment, we determined the fine specificities and frequencies of gamma interferon (IFN-gamma)-secreting CD8(+) T cells recognizing all HIV-1 proteins in patients with primary infection. In these subjects, the earliest detected responses were directed predominantly against Nef, Tat, Vpr, and Env. Tat- and Vpr-specific CD8(+) T cells accounted for the greatest frequencies of mean IFN-gamma spot-forming cells (SFC). Nef-specific responses (10 of 21) were more commonly detected. A mean of 2.3 epitopes were recognized with various avidities per subject, and the number increased with the duration of infection (R = 0.47, P = 0.031). The mean frequency of CD8(+) T cells (985 SFC/10(6) peripheral blood mononuclear cells) correlated with the number of epitopes recognized (R = 0.84, P < 0.0001) and the number of HLA-restricting alleles (R = 0.79, P < 0.0001). Neither the total SFC frequencies nor the number of epitopes recognized correlated with the concurrent plasma viral load. Seventeen novel epitopes were identified, four of which were restricted to HLA alleles (A23 and B72) that are common among African descendents. Thus, primary HIV-1 infection induces strong CD8(+)-T-cell immunity whose specificities broaden over time, but their frequencies and breadth do not correlate with HIV-1 containment when examined concurrently. Many novel epitopes, particularly directed to Nef, Tat, and Env, and frequently with unique HLA restrictions, merit further consideration in vaccine design.  相似文献   

6.
7.
The role of human immunodeficiency virus type 1 (HIV-1) accessory genes in pathogenesis has remained unclear because of the lack of a suitable in vivo model. The most controversial of these genes is nef. We investigated the requirement for Nef for in vivo replication and pathogenicity of two isolates of HIV-1 (HIV-1JR-CSF and HIV-1NL4-3) in human fetal thymus and liver implants in severe combined immunodeficient mice. HIV-1JR-CSF and HIV-1NL4-3 differ in their in vitro phenotypes in that HIV-1JR-CSF does not induce syncytia and is relatively noncytopathic, while HIV-1NL4-3 is highly cytopathic and readily induces syncytia. The nef mutants of both isolates grew with kinetics similar to those of parental virus strains in stimulated peripheral blood lymphocytes but demonstrated attenuated growth properties in vivo. HIV-1NL4-3 induced severe depletion of human thymocytes within 6 weeks of infection, whereas its nef mutant did not. Thus, HIV-1 Nef is required for efficient in vivo viral replication and pathogenicity.  相似文献   

8.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

9.
10.
The viral infectivity factor gene vif of human immunodeficiency virus type 1 has been shown to affect the infectivity but not the production of virus particles. In this study, the effect of vif in the context of the HXB2 virus on virus replication in several CD4+ T-cell lines was investigated. vif was found to be required for replication in the CD4+ T-cell lines CEM and H9 as well as in peripheral blood T lymphocytes. vif was not required for replication in the SupT1, C8166, and Jurkat T-cell lines. The infectivity of vif-defective viruses depended on the cell type in which the virus was produced. In CEM cells, vif was required for production of virus capable of initiating infection in all cell lines studied. vif-defective virus produced by SupT1, C8166, and Jurkat cells and the monkey cell line COS-1 could initiate infection in multiple cell lines, including CEM and H9. These results suggest that vif can compensate for cellular factors required for production of infectious virus particles that are present in some cell lines such as SupT1, C8166, and Jurkat but are absent in others such as CEM and H9 as well as peripheral blood T lymphocytes. The effect of vif was not altered by deletion of the carboxyl terminus of gp41, a proposed target for vif (B. Guy, M. Geist, K. Dott, D. Spehner, M.-P. Kieny, and J.-P. Lecocq, J. Virol. 65:1325-1331, 1991). These studies demonstrate that vif enhances viral infectivity during virus production and also suggest that vif is likely to be important for natural infections.  相似文献   

11.
12.
The nef genes of the human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) and the related simian immunodeficiency viruses (SIVs) encode a protein (Nef) whose role in virus replication and cytopathicity remains uncertain. As an attempt to elucidate the function of nef, we characterized the nucleotide and corresponding protein sequences of naturally occurring nef genes obtained from several HIV-1-infected individuals. A consensus Nef sequence was derived and used to identify several features that were highly conserved among the Nef sequences. These features included a nearly invariant myristylation signal, regions of sequence polymorphism and variable duplication, a region with an acidic charge, a (Pxx)4 repeat sequence, and a potential protein kinase C phosphorylation site. Clustering of premature stop codons at position 124 was noted in 6 of the 54 Nef sequences. Further analysis revealed four stretches of residues that were highly conserved not only among the patient-derived HIV-1 Nef sequences, but also among the Nef sequences of HIV-2 and the SIVs, suggesting that Nef proteins expressed by these retroviruses are functionally equivalent. The "Nef-defining" sequences were used to evaluate the sequence alignments of known proteins reported to share sequence similarity with Nef sequences and to conduct additional computer-based searches for similar protein sequences. A gene encoding the consensus Nef sequence was also generated. This gene encodes a full-length Nef protein that should be a valuable tool in further studies of Nef function.  相似文献   

13.
14.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells in early infection are associated with the dramatic decline of peak viremia, whereas their antiviral activity in chronic infection is less apparent. The functional properties accounting for the antiviral activity of HIV-1-specific CD8+ T cells during early infection are unclear. Using cytokine secretion and tetramer decay assays, we demonstrated in intraindividual comparisons that the functional avidity of HIV-1-specific CD8+ T cells was consistently higher in early infection than in chronic infection in the presence of high-level viral replication. This change of HIV-1-specific CD8+ T-cell avidity between early and chronic infections was linked to a substantial switch in the clonotypic composition of epitope-specific CD8+ T cells, resulting from the preferential loss of high-avidity CD8+ T-cell clones. In contrast, the maintenance of the initially recruited clonotypic pattern of HIV-1-specific CD8+ T cells was associated with low-level set point HIV-1 viremia. These data suggest that high-avidity HIV-1-specific CD8+ T-cell clones are recruited during early infection but are subsequently lost in the presence of persistent high-level viral replication.  相似文献   

15.
16.
The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4(+) T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef.  相似文献   

17.
The structural requirements for proteolytic cleavage of the human immunodeficiency virus type 1 env gene product, gp160, to gp120 and gp41 have been assessed by specific mutagenesis of the sequence Lys Ala Lys Arg Arg Val Val Glu Arg Glu Lys Arg located between amino acids 500 and 511, i.e., at the putative C terminus of gp120. The basic amino acids underlined have been mutated, individually and in combination, to neutral amino acids, and the cleavability of the mutated env gene products was examined after expression in CV-1 cells. The results show that the replacement of Arg-511 (cleavage presumably occurs C terminal to this amino acid) with Ser completely abolishes recognition and cleavage by the cellular protease(s), i.e., the remaining basic amino acids in the vicinity do not serve as alternative substrates. However, Arg-508 and Lys-510 are important features of the recognition site since, when they are individually changed to neutral amino acids, cleavage is severely impaired. The basic amino acids 500, 502, and 504 are, individually, not important for cleavage, since their individual replacement by neutral amino acids does not impair cleavage. However, when all four basic amino acids 500, 502, 503, and 504 are changed to neutral amino acids, cleavage is almost completely abolished. This shows that the sequence Arg Glu Lys Arg at the cleavage site is alone not sufficient for cleavage but that a contribution of other amino acids is required, whether the other amino acids provide a basic character or a certain structure in the vicinity of the cleavage site. When noncleavable or poorly cleavable mutant env genes are expressed from the infectious plasmid pNL4-3 in CD4+ human lymphoblastoid cells, noninfectious virus, incapable of spread throughout the culture, is produced.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号