首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acylated proteins in Acholeplasma laidlawii.   总被引:8,自引:4,他引:4  
The covalent modification of membrane proteins by long-chain fatty acids was determined in two strains of Acholeplasma laidlawii by one-dimensional gel electrophoresis of radiolabeled membranes. Of the more than 50 membrane polypeptides detected, approximately 30 were labeled with [3H]palmitate, whereas covalent binding of [3H]oleate to membrane proteins could not be demonstrated. We suggest that in these wall-less bacteria, membrane protein acylation with saturated fatty acids may serve to ensure the structural integrity of the membrane.  相似文献   

2.
Transport of 3-O-methyl-D-glucose (3-O-MG) by Acholeplasma laidlawii cells was studied. The 3-O-MG transport system appeared to be constitutive in cells grown on 3-O-MG and glucose; the transport process depended on the concentration of substrate used and exhibited typical saturation kinetics, with an apparent Km of 4.6 muM. 3-O-MG was transported as a free carbohydrate and was not metabolized further in the cell. Dependence on pH and temperature and the results of efflux and "counterflow" experiments demonstrated the carrier nature of the transport system. 6-Deoxyglucose and glucose competitively inhibited 3-O-MG transport, whereas maltose inhibited in non-competitively. p-Chloromercuribenzoate, p-chloromercuribenzene sulfonate, N-ethylmaleimide, and iodoacetate inhibited transport of 3-O-MG. Cells were able to accumulate 3-O-MG against a concentration gradient. Some electron transfer inhibitors (rotenone and amytal), arsenate, dicyclohexylcarbodiimide, and proton conductors such as 2,4-dinitrophenol, carbonylcyanide, m-chlorophenylhydrazone, pentachlorophenol, and tetrachlorotrifluoromethylbenzimidazole inhibited this process.  相似文献   

3.
A purified preparation of ATPase (factor F1) from the Acholeplasma laidlawii was obtained. The purification procedure included extraction of the enzyme complex from the isolated membranes by ultrasonication, chromatography on DEAE-cellulose and gel filtration on Sepharose 6B. The specific activity of the ATPase was increased 30-fold as compared to the original activity. The Km value for ATP hydrolysis was 7,4 . 10(-4) M. ADP competitively inhibited the enzyme (Ki = 2,0 . 10(-4) M). Ouabain (2,5 . 10(-4) M) and dicyclohexylcarbodiimide (1,0 . 10(-4) M) did not inhibit the ATPase activity. The enzyme was activated by Mg2+, but was inhibited by a combination of Na+ and K+. The enzyme is cold-labile, but can be stabilized by storage in buffer solutions, containing methanol, glycerol or lecithin.  相似文献   

4.
The cytoplasmic membrane of micoplasmic cells, in particular of A. laidlawii cells, contains a proton-carrier Mg2+ -activated ATPase. A whole H+ -ATPase complex (F0-F1) was isolated from these cells and characterized. The isolation procedure included solubilization of the enzyme with Triton X-100 followed by ion-exchange chromatography on DEAE-cellulose and gel filtration on Sepharose 6B. The enzyme was inhibited by dicyclohexylcarbodiimide (10(-4) M). The Km value for ATP hydrolysis and Ki for ADP hydrolysis were determined. The order of the constants did not differ from those measured earlier for factor F1 of the complex. The purified enzyme, similar to its hydrophylic moiety is sensitive to the action of bivalent cations. The subunit composition of the whole complex and of its water-soluble part was investigated. The complex was found to contain 11 polypeptides, five of which belong to factor F1. The molecular weights of these polypeptides were determined.  相似文献   

5.
Regulation of the synthesis of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system was systematically studied in wild-type and mutant strains of Salmonella typhimurium and Escherichia coli. The results suggest that enzyme I and HPr as well as the glucose-specific and the mannose-specific enzymes II are synthesized by a mechanism which depends on (i) cyclic adenosine monophosphate and its receptor protein; (ii) extracellular inducer; (iii) the sugar-specific enzyme II complex which recognizes the inducing sugar; and (iv) the general energy-coupling proteins of the phosphotransferase system, enzyme I and HPr.  相似文献   

6.
Adenylate energy charge in Acholeplasma laidlawii.   总被引:8,自引:7,他引:1       下载免费PDF全文
Adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate were produced by Acholeplasma laidlawii B-PG9 growing in modified Edward medium. The adenylate energy charge was calculated to be 0.84 +/- 0.07 and ranged from 0.91 to 0.78 during exponential growth (12 to 24 h). During exponential growth, A. laidlawii contained, at 17.5 h, 2.3 X 10(-17) mol of adenosine 5'-triphosphate per colony-forming unit and, at 16 h, 27.3 nmol of adenosine 5'-triphosphate per mg (dry weight). The medium supported a doubling time of 0.95 h. The molar growth yields (Yglucose = grams [dry weight] per mole of glucose used) were 40.2 +/- 3.4 (16 h) and 57.1 +/- 9.7 (20 h) during midexponential growth. A maximum yield of 8.3 X 10(9) colony-forming units was reached at 24 h, when 56% of the initial concentration of glucose had been used. At 40 h, during the stationary phase, 14.95 +/- 3.75 mumol of glucose per ml of medium had been used. At this time, the culture fluids contained 21.86 +/0 mumol of lactate per ml and 3.14 +/- 0.13 mumol of pyruvate per ml.  相似文献   

7.
On the phosphorylation of sugars in Acholeplasma laidlawii   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
Extracts of Acholeplasma laidlawii B-PG9 were examined for the enzymes associated with the interconversion of the pyrimidine deoxyribonucleotides and the biosynthesis of thymidine nucleotides. A. laidlawii B-PG9 possessed deaminases for deoxycytidine and dCMP, pyrophosphatases for dUTP, phosphorylases for thymidine and uridine, and a membrane-associated pyrimidine deoxyribonucleoside monophosphate phosphatase activity. The role these enzyme activities have in the generation of deoxyribose-1-phosphate during growth may explain the ability of A. laidlawii B-PG9 to utilize either thymine or thymidine for biosynthesis.  相似文献   

10.
11.
The genes for 22 tRNA species from Acholeplasma laidawii, belonging to the class Mollicutes (Mycoplasmas), have been cloned and sequenced. Sixteen genes are organized in 3 clusters consisting of eleven, three and two tRNA genes, respectively, and the other 6 genes exist as a single gene. The arrangement of tRNA genes in the 11-gene, the 3-gene and the 2-gene clusters reveals extensive similarity to several parts of the 21-tRNA or 16-tRNA gene cluster in Bacillus subtilis. The 11-gene cluster is also similar to the tRNA gene clusters found in other mycoplasma species, the 9-tRNA gene cluster in M.capricolum and in M.mycoides, and the 10-tRNA gene cluster in Spiroplasma meliferm. The results suggest that the tRNA genes in mycoplasmas have evolved from large tRNA gene clusters in the ancestral Gram-positive bacterial genome common to mycoplasmas and B.subtilis. The anticodon sequences including base modifications of 15 tRNA species from A.laidlawii were determined. The anticodon composition and codon-recognition patterns of A.laidlawii resemble those of Bacillus subtilis rather than those of other mycoplasma species.  相似文献   

12.
Small heat shock proteins (sHSPs) control the proteins stability in the cell preventing their irreversible denaturation. While many mycoplasmas possess the sHSP gene in the genome, Acholeplasma laidlawii is the only mycoplasma capable of surviving in the environment. Here we report that the sHSP IbpA directly interacts with the key division protein FtsZ in A. laidlawii, representing the first example of such interaction in prokaryotes. FtsZ co-immunoprecipitates with IbpA from A. laidlawii crude extract and in vitro binds IbpA with KD ~ 1 μM. Proteins co-localize in the soluble fraction of the cell at 30–37 °C and in the non-soluble fraction after 1 h exposition to cold stress (4 °C). Under heat shock conditions (42 °C) the amount of FtsZ decreases and the protein remains in both soluble and non-soluble fractions. Furthermore, in vitro, FtsZ co-elutes with IbpAHis6 from A. laidlawii crude extract at any temperatures from 4 to 42 °C, with highest yield at 42 °C. Moreover, in vitro FtsZ retains its GTPase activity in presence of IbpA, and the filaments and bundles formation seems to be even improved by sHSP at 30–37 °C. At extreme temperatures, either 4 or 42 °C, IbpA facilitates FtsZ polymerization, although filaments under 4 °C appears shorter and with lower density, while at 42 °C IbpA sticks around the bundles, preventing their destruction by heat. Taken together, these data suggest that sHSP IbpA in A. laidlawii contributes to the FtsZ stability control and may be assisting appropriate cell division under unfavorable conditions.  相似文献   

13.
HU is a most abundant DNA-binding protein in bacteria. This protein is conserved either in its heterodimeric form or in one of its homodimeric forms in all bacteria, in plant chloroplasts, and in some viruses. HU protein non-specifically binds and bends DNA as a hetero- or homodimer and can participate in DNA supercoiling and DNA condensation. It also takes part in some DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows some specificity to cruciform DNA and to repair intermediates, e.g., nick, gap, bulge, 3′-overhang, etc. To understand the features of HU binding to DNA and repair intermediates, a fast and easy HU proteins purification procedure is required. Here we report overproduction and purification of the HU homodimers. The method of HU purification allows obtaining a pure recombinant non-tagged protein cloned in Escherichia coli. We applied this method for purification of Acholeplasma laidlawii HU and demonstrated that this protein possesses a DNA - binding activity and is free of contaminating nuclease activity. Besides that we have shown that expression of A. laidlawii ihf_hu gene in a slow-growing hupAB E. coli strain restores the wild-type growth indicating that aclHU can perform the basic functions of E. coli HU in vivo.  相似文献   

14.
In membranes of the prokaryote Acholeplasma laidlawii, the physiological regulation of the two major membrane lipids, monoglucosyldiacylglycerol (MGlcDAG) and diglucosyldiacylglycerol (DGlcDAG), is governed by factors affecting the equilibria between lamellar and non-lamellar phases of the membrane lipids. The synthesis of the glucolipids is considered to be a two-step glucosylation: (i) DAG+UDP-Glc----MGlcDAG+UDP; and (ii) MGlcDAG+UDP-Glc----DGlcDAG+UPD. This was corroborated by in vivo pulse labelling experiments showing turnover of MGlcDAG but not DGlcDAG. The enzymatic synthesis of MGlcDAG was localized to fresh or freeze-dried membranes in vitro. Synthesis of DGlcDAG was minor in such membranes but of substantial magnitude in intact cells. Synthesis of MGlcDAG was stimulated by small amounts of SDS but completely inhibited upon solubilization of the membranes by a variety of detergents. The inhibitory effect of several UDP-Glc analogs on glucolipid synthesis demonstrated the importance of UDP-Glc as the sugar donor. Synthesis of both glucolipids was lost in freeze-dried plus lipid-extracted cells but restored when lipids were transferred back to the extracted cell membrane. By selectively adding specific lipids, a strong dependence on the acceptor lipid DAG, as well as the need for general matrix lipids for enzyme activity, was established. In addition, the anionic phosphatidylglycerol (PG), but not the other phospholipids, had a strong stimulatory effect. The presence of different phosphorylating agents stimulated the synthesis of DGlcDAG and partially inhibited that of MGlcDAG. This, together with the lipid dependency, may constitute mechanisms for the regulation of the enzyme activities in vivo.  相似文献   

15.
16.
The membrane composition of 11 strains of Acholeplasma laidlawii, including three strains persistently infected with mycoplasmaviruses MVL51, MVL2, and MVL3, was studied and correlated with mycoplasmavirus sensitivity. Membranes of the strains had similiar sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns, and all strains were inhibited by an antiserum produced against membranes from one of the strains. The amounts of integral membrane proteins solubilized by the nonionic detergent Tween 20 differed considerably. Therefore, characteristic crossed immunoelectrophoresis patterns were obtained for each strain. Strains persistently infected with MVL2 and MVL3 were notably different from the noninfected host. The ability to propagate any of the viruses was not correlated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis or crossed immunoelectrophoresis patterns. The persistently infected strains had a characteristic lipid composition. MVL51-resistant strains, including a resistant clone selected from a sensitive strain, were characterized by a large monoglucosyldiglyceride/diglucosyldiglyceride ratio and trace amounts of diphosphatidylglyceol (as opposed to the sensitive strains). Differences in lipid composition in A. laidlawii seem to affect the relationship between cells and viruses.  相似文献   

17.
Control of membrane lipid fluidity in Acholeplasma laidlawii   总被引:3,自引:0,他引:3  
  相似文献   

18.
Selective acylation of membrane proteins in Acholeplasma laidlawii   总被引:10,自引:0,他引:10  
In membranes of the cell-wall-less prokaryote Acholeplasma laidlawii most proteins are of the integral type. A substantial fraction of these proteins are enriched in hydrophilic amino acid residues. Approximately 20 different major as well as minor proteins were found to be covalently modified with acyl chains. The same set of proteins are acylated when cells are grown in different fatty-acid-supplemented media. In individual proteins the ratio of palmitoyl/oleoyl acyl chains was 12-14 times larger than the acyl chain ratio in polar membrane lipids. The transmembrane protein D12 has close to two acyl chains per molecule. Proteins T2 and T4a, localized in the outer and inner leaflet of the membrane, respectively, occur each as pairs with a difference in relative molecular mass within each pair of approximately 2000. Each of these proteins as well as the other acyl proteins, except the light form of T4a, has close to one acyl chain per molecule. The extent of acylation was increased for certain proteins and decreased for others by treatment with globomycin or phenethylalcohol. The relative amounts of the T2 and T4a pairs were affected by these drugs. It is concluded that the mechanism of acylation is different from that in Escherichia coli lipoprotein and Bacillus penicillinase. The mean hydrophobicity [Kyte & Doolittle (1982) J. Mol. Biol. 157, 105-132] of the A. laidlawii acyl proteins are similar to those of other bacterial acyl proteins but significantly lower than for non-acylated integral membrane proteins, supporting an anchoring function of the acyl chains. The number of membrane acyl proteins in A. laidlawii and two other mycoplasmas are at least twice that in other bacteria.  相似文献   

19.
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.  相似文献   

20.
The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIA Glc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated N delta 1- and N epsilon 2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号