首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.  相似文献   

5.
6.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

7.
In the present study, we examined the effects of sequential exposure to bacterial lipopolysaccharide (LPS) and heat stress on dental pulp cells. LPS induced the proliferation of pulp cells through the activation of p38 MAPK. HSP27 was expressed in cells with or without LPS during the entire period of heat stress, while transiently phosphorylated by short-term heat stress. In LPS-treated cells, short-term heat stress also induced the phosphorylation of HSF1. The immediate phosphorylation of HSF1 and HSP27 in LPS-treated cells by short-term heat stress occurred dependent on the activation of p38 MAPK. However, with long-term heat stress, the activation of HSF1 and induction of HSP27 occurred independent of p38 MAPK. Further, full activation of Akt in LPS-treated cells was immediately induced by short-term heat stress and lasted during the entire period of heat stress. IkappaB alpha was induced and phosphorylated throughout sequential exposure to LPS and heat stress. These results suggest that LPS has the unique effects on the cytoprotection and the cell death of pulp cells during heat stress through the modification and the activation of heat stress responsive molecules, HSF1 and HSP27, and cell survival molecules, Akt and NF-kappaB/IkappaB alpha.  相似文献   

8.
9.
10.
11.
The present study highlighted the aromatic-participant interactions in in vivo trimerization of HSF1 and got an insight into the process of HSF1 protecting against apoptosis. In mouse embryonic fibroblasts (MEFs), mutations of mouse HSF1 (W37A, Y60A and F104A) resulted in a loss of trimerization activity, impaired binding of the heat shock element (HSE) and lack of heat shock protein 70 (HSP70) expression after a heat shock. Under UV irradiation, wild-type mouse HSF1 protected the MEFs from UV-induced apoptosis, but none of the mutants offered protection. We found that normal expression of HSF1 was essential to the cell arrest in G2 phase, assisting with the cell cycle checkpoint. The cells that lack normal HSF1 failed to arrest in the G2 phase, resulting in the process of cell apoptosis. We conclude that the treatment with UV or heat shock stresses appears to induce the approach of HSF1 monomers directly via aromatic-participant interactions, followed by the formation of a HSF1 trimer. HSF1 protects the MEFs from the stresses through the expression of HSPs and a G2 cell cycle arrest.  相似文献   

12.
13.
14.
Heat shock proteins (HSPs) are thought to play a role in the development of cancer and to modulate tumor response to cytotoxic therapy. In this study, we have examined the expression of hsf and HSP genes in normal human prostate epithelial cells and a range of prostate carcinoma cell lines derived from human tumors. We have observed elevated expressions of HSF1, HSP60, and HSP70 in the aggressively malignant cell lines PC-3, DU-145, and CA-HPV-10. Elevated HSP expression in cancer cell lines appeared to be regulated at the post-messenger ribonucleic acid (mRNA) levels, as indicated by gene chip microarray studies, which indicated little difference in heat shock factor (HSF) or HSP mRNA expression between the normal and malignant prostate cell lines. When we compared the expression patterns of constitutive HSP genes between PC-3 prostate carcinoma cells growing as monolayers in vitro and as tumor xenografts growing in nude mice in vivo, we found a marked reduction in expression of a wide spectrum of the HSPs in PC-3 tumors. This decreased HSP expression pattern in tumors may underlie the increased sensitivity to heat shock of PC-3 tumors. However, the induction by heat shock of HSP genes was not markedly altered by growth in the tumor microenvironment, and HSP40, HSP70, and HSP110 were expressed abundantly after stress in each growth condition. Our experiments indicate therefore that HSF and HSP levels are elevated in the more highly malignant prostate carcinoma cells and also show the dominant nature of the heat shock-induced gene expression, leading to abundant HSP induction in vitro or in vivo.  相似文献   

15.
16.
17.
18.
19.
The exposure of human fibroblasts (HF) aging in vitro to heat shock resulted in an attenuated expression of the heat shock-inducible HSP70. When late passage cells were cultured in the continuous presence of serum, we observed a reduced accumulation of the cytoplasmic polyadenylated HSP70 mRNA. The levels of HSF1 activation and nuclear HSP70 mRNA were comparable to those of early passage cells (M. A. Bonelli et al., Exp. Cell Res. 252, 20-32, 1999). When late passage cells were serum-starved overnight, we observed a reduced activation of HSF1 and a decreased level of HSP70 mRNA during heat shock. However, at 37 degrees C the levels of HSF1 differed little between late passage HF and early passage cells, irrespective of the presence of serum. Interestingly, during heat shock a marked decrease in the level and, consequently, in the binding activity of HSF1 was noted only in serum-starved, late passage HF. The decrease in the level of HSF1 was counteracted by back addition of serum to the cells during heat shock. Addition of the specific proteasome inhibitor MG132 blocked a decrease in HSF1 during heat shock, maintaining levels observed in late passage cells and HSF1 activity comparable to that of early passage HF. The recovery of the level and activity of HSF1 observed in late passage HF incubated in the presence of MG132 suggests that heat shock unmasks a latent proteasome activity responsible for HSF1 degradation.  相似文献   

20.
Heat shock factor 1 (HSF1) mediates the cellular response to stress to increase the production of heat shock protein (HSP) chaperones for proper protein folding, trafficking, and degradation; failure of this homeostatic mechanism likely contributes to neurodegeneration. We show that the neuroprotective drug riluzole increased the amount of HSF1 in NG108-15 neuroprogenitor cells by slowing the specific turnover of HSF1 and supporting a more robust and sustained activation of HSF1. Using Hsp70-luciferase as a functional readout of the activity of HSF1, we show that riluzole amplified the heat shock induction of the reporter gene with an optimal increase at 1 μM. Immunocytochemical staining and Western blot quantitation of HSP70 in NG108-15 neuroprogenitor cells and embryonic spinal cord neurons provided corroborative evidence that riluzole amplified the HSF1-dependent regulation of HSP70 expression. Parallel studies on the GLT1 glutamate transporter showed that riluzole increased GLT1-reporter and GLT1 protein expression and that the increase was enhanced by heat shock and coincident with the increased expression of HSP70 and HSP90. This result is consistent with the anti-glutamatergic profile of riluzole and the presence of multiple heat shock elements on the GLT1 gene promoter, suggesting that riluzole may modulate GLT1 expression through HSF1. The increased HSP chaperones and GLT1 transporter blunted glutamate-induced and N-methyl D-aspartate receptor-mediated excitotoxic death. In summary, we show that riluzole increased the amount and activity of HSF1 to boost the expression of HSPs and GLT1 for neuroprotection under stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号